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Direct correlation functions in two-dimensional anisotropic fluids
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A geometrical approximation for the direct correlation of two-dimensional multicomponent fluids is intro-
duced herein. This approximation is semianalytical and involves the knowledge of elementary geometrical
properties of a single particle. The formalism is applied to anisotropic two-dimensional fluids of various
particle shapes such as hard ellipses, diskorectangles, and cut disks of various size ratios. The particular case
of the hard needles fluid is also investigated. The accuracy of the approximation is tested by comparing the
equation of state and the correlation functions to those obtained by integral equation techniques and Monte
Carlo simulations. In almost all cases these comparisons are found to be quite satisfactory and even excellent
in the case of moderate size ratios. Both the isotropic and orientationally ordered phases are investigated and
particular attention is paid to the orientational stability of the isotropic phase. The cut disk fluid has a particu-
larly interesting long-range order for thicknesses around 0.3, which is very much reminiscentcobtte
order observed in the corresponding three-dimensional case of cut spheres. This feature observable by both the
simulations and the hypernetted chain integral equation is also predicted by the present geometrical theory, but
at larger thicknesse$S1063-651X98)07408-X]

PACS numbdis): 61.20—p, 61.30--v, 64.70.Ja, 68.15.e

[. INTRODUCTION sitions in two-dimensional systems is still full of controver-
sies. For example, the question about the order of the fluid-
Many thin films of liquid crystalline substances form solid transition of the hard disk fluid is still unanswefé&q7]
guasi-idealized two-dimensional liquid crystalline phasegone first-order transition or two second-order transitions via
[1]. If one concentrates solely on the interactions based oa hexatic phage The basic mechanism for the transition in
steric considerations, which is quite reasonable for thes@vo dimensions is based on the unbinding of defects formed
molecules, which are mostly rodlike, then one can resort ton the ordered phase, following a Kosterlitz-Thould$3
two-dimensional convex shapes in order to model such flutype of scenario. The detection of such transition by finite
ids. This simplification certainly captures the essential of thesjze computer simulation techniques is not straightforward
excluded volume interaction contribution to the physics of[2]. |t is not the aim of the present work, however, to get into
such fluids. This is the point of view we adopt here by con-g,ch considerations. Rather, the focus is on standard equilib-
sidering two-dimensional fluids made of several hard convex; ;m theory of liquids, more precisely, the determination of

shapes such as ellipses, diskorectangisade of two half o o4 ation of statEOS and the structural features of the
disks encapsulating a rectanglewhich are the two- isotropic phase

dimensional equivalent of the spherocylinders, and cut disks An essential ingredient of the theory of fluid is the direct

a disk from which two equal caps have been removed from : . . L
Eop and bottory which argsimilarpto the cut spheres in three correlation function(DCF), which allows the determination

dimensions. These simple shapes can be described with fe9\]; the_ mechani_c_al stabilitthe compressibilit)(and the ori-
ntational stabilitthe Kerr constantof the fluid, as well as

parameters such as the aspect ratio for the ellipse, the diarfy . - ) SR
etero of the disk, the length of the cylindér in the case of € Pair correlation function to which it is linked by the
the diskorectangle, and the thickness of the cut diskin- ~ Ornstein-Zernike equatiof9]. Unlike the pair correlation
like the hard disk fluid, which has been abundantly studied iffunction, which has a physical meaning and can be measured
the past by both computer simulations and various standar@y computer simulations, the direct correlation function has
theories of liquids, other convex shapes have received litti@nly a formal definition relating it to the second-order func-
attention. A notable exception is the hard ellipse liquid,tional derivative of the free enerd®]. The Percus-Yevick
which has been studied by computer simulatiffisdensity ~ analytical solution in the case of the hard spheres and mix-
functional theorie$3], and integral equation methofi$,5]. tures is not much help in this matter. Such a solution is not
Although being simple models of two-dimensional liquid known for even dimensiongl0]. Recently, Rosenfel@11]
crystalline phases, the hard ellipse fluids have surprisinglyas put forth an illuminating geometrical interpretation of the
interesting properties. The computer simulations have rePercus-Yevick solution for the case of hard spheres that al-
vealed that for aspect ratios large enough to give a liquidows one to express the direct correlation function as a sepa-
crystalline phasdgabout 4 the isotropic-nematic transition rable function of density and various geometrical functions
was, as expected, second order for large aspect r@imsit  of the overlap between two hard spheres. The most appealing
6), but first order for smaller ones. The study of phase tran-feature of this formalism is that these geometrical functions
are expressed solely in terms of various weight functions
depending on the individual molecular geometrical proper-
*Unite associéeau CNRS. ties. Rosenfeld also proposed an extension to two dimensions
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[12], obtaining an analytical expression for the DCF for hardby successive functional differentiations of E4). In par-

disks and mixtures. ticular, for the pair DCF one has
The straightforward extension of this fruitful approach to
more general convex shapes was shown by18 to be P BF
impossible without fundamental alterations of the original Cij(1,)=——"—"—
api(1)ap;(2)

approach. The main drawback came from the isotropy of the

underlying weight functions in the long-wavelength limit, (@) )

which in turn led to the isotropy of the DCF in the same limit = _EB J d3 ®,5(3)W“(1Jw;™(23),  (3)
with the consequence of the inability of such a DCF to ac- «

count for any orientational instability of the isotropic phase..where we have used the same shorthand notation
This major flaw was corrected by accounting for the correcfor the weights as in Eq.2). The notation ®,4(3)
Zero-denSity limit of the DCF, which is the Mayer function indicates the functional second derivativel)aﬂ(:g)
[13]. This point is crucial in the extension of the theory to — 52/ 9p(@)(3)gp#)(3).

two-dimensional systems. Indeed, while the Mayer function | order to go further, the choice fdr and for the weight
of hard spheres can be written as a combination of weighfynctions must be specified. We will adopt here the two-
functions, this is not the case for the two-dimensional hardyimensional(2D) scaled-particle theorySPT) form [12],

disk fluid [12]. Instead of introducing an approximate Mayer hich is given by the following expression, written here for
function that can be written as a combination of weights as innnomogeneous systems:

Ref.[12], we directly introduce the correct Mayer function.

The resulting approximatiofand a variantis presented in p3(1)

detail in the present work. O[{p (D)} =—po(D)IN[1—py(1) ]+ ———.
The remainder of this paper is set up as follows. In Sec. Il 4m[1-po(1)]

we present the semi-analytical DCF approximation and the (4)

resulting thermodynamics for the general case, as well ag, ihe case othomogeneoudiuids, the weighted densities
some details .concerning our Monte Carlo simulatipns qnd (@ are independent of the spatial varialleand simply
integral equations mt_ethods. Qur appro_ach Qf the orientationy . e to the standard SPT variables

ally ordered phases is also discussed in this section. Section

Il contains our results for several anisotropic fluids and the

comparisons of the thermodynamic and structural properties P(“)Zfa:Zi PR, 5)

with those obtained from the simulations and integral equa-
tions. Finally, in Sec. IV we gather our conclusions and peryhich are linked to the fundamental geometrical properties

spectives. of the individual particle for each speciéswhich are the
surfaceR(®=S, the perimeteR(Y=/, and finallyR{®)=1.
Il. THEORY From now on we consider only homogeneous systems,
A. The geometrical approximation for the DCF which are our main concern here. Using E@—(5) one can

) i . express the homogeneous pair DCF as
The complete version of this theory for the case of aniso-

tropic fluid mixtures in three dimensions was presented ina  ¢;;(1,2)= — xsAS;;(1,2 — x AL;;(1,2 + xoF(1,2), (6)
previous article/13]. We consider ainhomogeneousix-

ture of N component fluids. The starting point is to write the Where we have explicitly

excess free energy density as a functional of a set of 5
inhomogeneous weighted densitje€)(1), which are func- &o &1

. - ) . . xs=P 2= >t 3
tion of both the positiorr and orientation() of particle 1. (1-&5)° 2m(1l-&y)
The resulting excess free energy can be written(vaish
B=1/kgT, the inverse Boltzmann temperature &
x=®y=———, )
2m(1-¢;)
BFex[p]=f d1@[{p'“(1)}]. (o
1
This set of inhomogeneous weighted densities implies an Xo=P20=
exact knowledge of the fundamental geometrical measures or (1=&)
weights functionsw{*)(1) for each particlel belonging to  4.q
the species:
AS;(1,2=wZ(1)*w?(2),
(@(1)= fdz-zw-(‘”lz, 2
p=2 pi(2)W((12) 2 AL 2w ),
where the sum is carried over all specieandp;(1) is the Fi,—(1,2)=Wi(2>(1)*WJ(°)(2)+Wi(°>(1)*WJ(2)(2)

number density of speciasfor the inhomogeneous system.
The shorthand notationw(®(12) stands explicitly for 1

- : + —wH()*wiP(2)
w(®(r;—r5,9,). Then-body DCF can be obtained formally 27 i ’
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where the asterisk denotes convolution. The most remarkable . 1 R
feature of Eq.(6) is the nice decoupling between density- w(r,Q)= EH(“_Ri(Q)D
dependent coefficientg, and spatial variables through the

geometrical functions;, Lij, andF;;. and the surface weight as

We turn now to the determination of the weight functions
and their general properties. The prescription of the one- 1 1
body functionp;(1) contains the information about the sym- wh(r,Q)=-—\/1+=
metry of the phase under study. The weights, on the other 2m 2
hand, by construction, should contain information only about .
the geometry of the particle. Then E@) tells us that the In these equationB;(£2) is a vector pointing to the external
weighted densitiep (1) will carry the same information as perimeter of the particle of specigswhich is oriented by(2
pi(1) about the symmetry of the phase that is studied. Onci the laboratory fixed frame. These two definitions have the
this point is clarified, one can write down the formal expan-advantage of satisfying Ed5), although they are not the
sion of the weights in a basis of rotational invariants. In twounique possible representations that can lead to this result.
dimensions, with the choice of variables-(r,6,) and @  However, they reduce the corresponding weights for hard

=(#0), such an expansion reagsith all the angles chosen in disks. e ) _
a laboratory fixed frame From these definitions we see that the entire weight func-

tion formalism is restricted to two-dimensionalonvex
shapedit is naturally imposed by the unity of the vector

ﬁi(ﬂ) for each orientatio2, which is not true for noncon-
vex shapef The extension to nonconvex shapes is not out-
The Fourier-Bessel transform of the weigh{ ¥ ruled, however, and the generalization of the present formal-
ism to tangent disks, for example, can be formulated in very
wi(“)(k,ﬂ)=§ wf%(k)e'm“’k“’), (10 :j?rl;cehn;?;nss{??f way as for the tangent sphere case in three
Using these definitions, we see that the terms in Egjs.
with the expression for the transform of the expansion coefgather a different geometrical significanceS;;(1,2) is now
ficients the surface of the geometrical overlap between particles 1
and 2 belonging, respectively, to specieand . Similarly,
AL;;(1,2) is the perimeter of this overlap area.
As concerns the third weighw(?), although one could
construct a distribution that satisfies the corrkeetO limit
From the properties of the Bessel functidf(x) in the limit  [16], we can see that there is no need to do so. Indeed, in the

dr)2
AT O(Ri(Q)—r). (13

WE“)(F,Q)=% wi(r)emer=o), (9)

Wit =i" [ dF wigh()3p(ko) 1

x—0 one gets by using Eq&2) and (5) limit of zero density, the pair DCF must reduce to the Mayer
~ function fy.;; (12)=exd — ¢;;(1,2) kgT]— 1, where¢;;(1,2)
wi(;“nl(k=0)=5m0R(">. (12)  is the hard core interaction between particles 1 and 2 of,

respectively, specigsandj. From Eq.(7) we see that in the

Equation(12), which is very general and independent of thezero-density limit we havey,=yx,=0 and yo=1. There-
symmetry of the phase in consideration, implies two impor-fore, our approximation leads t@;;(1,2)|,-o="F(1,2).
tant points. First, the weights aisotropic in the limit k  Clearly,F;;(1,2), as defined in Ed8), is anisotropic func-
—0. This is the same point that was raised in the 3D caséon in the limitk=0 because it is expressed as a product of
[13]. Taking the Fourier-Bessel transform of E@), one  weight functions. As a consequence, it cannot be equal to
sees that the convolution products become products and thg,(1,2), which is fundamentally anisotropic in this limit.
above conclusion leads to the isotropy of the DCF in theTherefore, our approximation for the DCF in two dimensions
same limitk—0. This is clearly an unphysical behavior, as is to replace in Eq(6) Fi; by the Mayer functiorf.;;(1,2).
the DCF must account for the orientational instability of the  In particular, for the one-component system this approxi-
isotropic phasd14]. This isotropy is common to all order mation reads
DCF’s that can be derived within this formalism. It is impor-
tant to note that this flaw of the theory depends only on the c(1,2=—xAS(1,2— x AL(1,2+ xofu(1,2). (14
fact that we have introduced the weighted densities through
Eqg. (2). In view of the present result, it seems that the preFor the isotropic phase, the rotational invariant expansion of
vious success of the theory is applicable only for fluids ofthe DCF can be conveniently written in intermolecular frame
spherical particles. as[5]

Before we see how this flaw can be corrected, let us get to
the second point, which is in fact a hint to how we can write _ mn mn
down explicit expressions for the weights. Indeed, E}) c(1,2)—% N1 Y Or, Oar), (19
shows that the weights are linked to the SPT geometrical
variablesR(® in Eq. (5). It is then tempting to attribute the whered;, = 6,— 6, andy™"(8,, 6,) =exdi(mé,+nhy)] is the
same geometrical meaning to the corresponding weightsotational invariant of the isotropic phafg| (all the angles
Following then our study of the 3D case, we define the vol-being measured in the laboratory fixed frgnmiehe Fourier-
ume weight as Bessel transform of the DCF is expanded as
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C(L2=3 TU™ G100, (16 oS/ = — ’9(‘; P 1 e 22
' P

with the angles now measured in tkérame. The expansion

coefficients are given bj5] These two equations can be trivially solved fpf and y, ,

providing thus the second approximation for the DCF solely
~ R in terms ofZ. andZ, . In the present case and in the absence
cm”(k)=im+”f dr ¢™(r)Jmen(kr). (17) of known analytical expressions for the virial and compress-
ibility equations of state, one could use here the SPT EOS
derived from Eq.(4) as a single input. This is precisely the
method we have adopted in the numerical applications.
There is very little numerical difference between the two
approximations proposed here. They both yield the SPT
ZSm“(k)=\7v§nz)(k)\7v§12)(k), (18) compressibility py construc.tio(s.ee Sec. Il € In Sec. I we
show that the first approximation is somewhat superior, in
ML (2) (1) ~ (1), A= (2) the sense that it yields orientational instabilities in better
AL™(k) = wpy (K)wi™ (k) + Wi (K)wy™ (K). agreement with the hypernetted ch&NC) and simulation
) L : _results. The main drawback of the second approximation is
This completes the prescription of the geometrical approxiya¢ jt is not straightforward to extend it to mixtures. We also
mation for the DCF. note that none of these approximations guarantees that the
corresponding pair distribution functiog(12) determined
B. A second approximation for the DCF through the OZ equation will be zero inside the hard core
There is an alternate possibility, similar to the third DCF (€xcept of course in the zero-density lipnilt is not obvious
approximation in three dimensioni43]. In such a model, how this stringent constraint can be incorporated in either of
one could assume the form of the DCF similar to Eg.or ~ OUr approximations. ' .
(14) and compute they, coefficients from the virial and ~ We now turn to the calculation of properties such as the
compressibility equations of state. We have shown in Reféquation of state, the instability criteria for the isotropic
[13] that this approach gives the Percus-YevieR) solu- Phase, and finally our approach of the nematic phase.
tion for hard spheres when the appropriate equations of state
are used. The method is also applicable here and is detailed C. Thermodynamic properties
below. The last coefficient, can be determined from the
virial equation[5]

P,
szﬁ =1+ %j fduldu2[0(12)]29[<7(12)]v (ﬂ

p ap
(19

The Mayer function and the geometrical functioh$ and
AL can also be expanded similarly. The expansion coeffi
cients of the latter functions can be derived from E),

From the DCF one can compute directly the compressibil-
ity of the isotropic phase through the relation

=1-pC%%k=0). (23
.

At is interesting to know if the geometrical approximation
gives a compressibility that is consistent with the SPT free
energy. The answer is yes because the second virial coeffi-
cient, which is correctly given by the geometrical approxi-
mation, that isB,=S+ L?/21r, is also given by the original

wherea(12) is the contact distance between two molecule
with orientationsu; andu,. Assuming that the pair distribu-
tion functiong(12) is zero inside the hard cofehich is true
for the PY approximation, for exampleone gets easilyg

as ~ ~
DCF because of the relations 2B,=Ty(k=0)=F%(k
Z -1 =0), the last one following from Eqg18) and (12). The
Xo= UB , (20 resulting equation of state is then
pb2
2
where the second virial coefficieB, can be written a3, BP= %o " 1 €1 (24)

=(1/4m)  fdu,du,[ o(12)]2. The first two coefficientsyg 1-¢& 4 (1—&,)%

and y, can be derived from two coupled equations. The

equation relating the compressibilityhich uses the com-  gjimilarly, the chemical potential is given by
pressibility pressurg8P.) to the DCF[see Eq.(23)] gives

directl
y €o & 1 &
19p) BP+22Z,— 1 e o R T AT
(9 — — — —
St 2y s DIPIBPF 22, 7L 21) ? 2 o 52
PS 1 £é&, (25
The second equation can be derived from the Ornstein- 47 Ey(1-&,)%

Zernike (OZ) equation written for zero separation and iden-
tical orientations of the two particles. Again, by assumingThe explicit expression for the pressure allows us to calcu-
thatg(12)=0 inside the hard core one gets late all the virial coefficients in a single formula
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n—-1 lap geometry or the Mayer function, which are independent

By=S"""+ ﬁLzSn_z, (260  of symmetries lower than that of the isotropic phase, this

strongly suggests that a good approximation of the DCF may

which is of course exact only fdB,. also have the same property. If we replace the DCF in Eq.

The orientational stability of the isotropic phase can be(29) by the geometric approximation, the resulting equation
derived from the convexity of the free enerfy4] and is  can be solved18], with the result forp(6) = pf(6)
described by the positivity of the different modasg, given

exd pW(o
by [5] f(a):—qu ( )], (30
Ap=1—pc™ M(k=0)= — ! >0. (27) Where
1+ ph™ ™(k=0)
2 -
For the present model th&,,, are simply given by W(6)= Efo de'f(e')c(k=0,0-0"), (3D
Am=1-pxoFy "(k=0), (28)  with the normalization factoZ = [ d#exg pW(6)]. The ther-

modynamic properties can now be derived from the free en-

where x, can be evaluated from E§7) in the case of the o4 of the ordered phase whose excess part can be obtained
first approximation or by Eq20) for the second approxima- by the functional integration of the DOFL9] as
tion. Usually, the isotropic-nematic transition follows the de-

stabilization of the modé,, which is the two-dimensional A

analog of the inverse Kerr constant and is known to diverge?=BFed pl/V= —f f d1d2 P(l)P(Z)f d\ c(1,2\p).

at the limit of the orientational stability of the isotropic 0 32)
phase. The divergence af, * can occur in some cases and

in three dimensions this is linked to the appearance of ahe ideal part of the free energy is given IBF4[p]/
cubaticorder[17,18, which is characterized by short stack V= [d1 p(1){In[p(1)]—1}. The resulting chemical potential
pilings of about four particles, which themselves tend to stayand pressure can be derived from the standard thermody-

perpendicular to each other. The existence of a twonamic relations8u=d(BF/V)/dp and BP=pd(BFIV)/dp
dimensional analog of this type of order is an open question— gF/V.

D. Orientational order E. Integral equation approaches and computer simulations

The one-body density(1) contains the description of the  We have also solved the PY and HNC integral equations
orientational order. In the case of positionally homogeneousising the techniques developed in R] for various mo-
fluid this function will depend only on the relative orienta- lecular shapes. These techniques allows to obtain the pair
tion with respect to the global directar, that is, p(1)  DCF and the pair correlation functicg(1,2) from the sole
=p(6), where cosf)=n-u, with u describing the orientation input of the pair interactiqn, which is in f.act the Mayer func-
of the molecule. From Eq(2) we see that the weighted den- tion fy(1,2) for hard bodies. From previous wdi] it was
sities p,, should have the same angular dependence. Howound that these techniques allow us to obtain an accurate
ever, a closer look reveals that the isotropy of the weighPair correlation function, hence the DCF, for moderately
functions leads to weighted densities that are independent #9h densities and aspect ratios. In fact, it was found that the

the orientation of the molecule and E@) is again recov- WO approximations qften bracket th_e the(modynamic and
ered. Hence this formalism leads to an |dent|ty of the nemstructural results obtained from the simulations. These tech-

atic and isotropic phases. niques can thus serve as a test of the geometrical approach.
If we wish to use the corrected approximation for the !N particular, it is interesting to check if the geometrical DCF

DCF, the weighted density formalism must be abandoned PY-like in all aspects. _ _

and the one-body function must be computed by other meth- Finally, we have also used Monte CaflC) simulation

ods. There is an exact equation that links the one-body fundnethods to get the pressur@dPT ensemble simulations

tion to the DCF of the correspondirighomogeneouphase ~and some of the pair correlation function projectigfis/(r)
[9] (in the NVT ensemblg mainly those corresponding to indi-

ces (m,n)=(0,0), (2-2), (4,—4), and some others. The
projections (m,—m) in particular reflect the growth of ori-
31'”[P(1)]:j d2¢(1,2d,p(2). (29 entational correlations in the vicinity of densities for which

ordered phases can appear. The DCF cannot be measured
From this point two pathways are possible. Either we try todirectly by simulations. One needs to invert the total pair
propose an approximate DCF of the nematic phase or we usmrrelation function by using the Fourier-Bessel transform of
the DCF of the isotropic phase in the equation above in ordethe Ornstein-Zernike equatiof20]. This means that one
to computep(1). In principle, the DCF of the nematic phase must compute all the projections""(r) needed for a given
should reflect the symmetry and the invariance properties afmaximum value ofn. Although this method is quite feasible
the phase under study. Here the geometrical DCF brings ufpr moderate densitiegabout 20% of the close packing
here an important issue. Indeed, if the major contributions tavhen the pair correlation function is not long ranged and
the DCF come from properties such as the two-particle overdecays within the simulation box length, this is not the case
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at higher densities when the density correlations range can
exceed substantially the box length. If this is the case, the
Fourier-Bessel transforms of the pair correlations cannot be
handled satisfyingly, as the sméllvalues are inaccurate. In
order to avoid these complications, we have simply com-
pared the pair correlations obtained from the geometrical
DCF to those obtained in the simulations. Surprisingly, de-
spite the fact that these pair correlations are nonzero inside
the hard core region, the overall agreement was found to be >
quite good. The detailed comparisons are discussed in the
next section for several model fluids.

Ill. RESULTS FOR 2D FLUIDS

In this section we consider our results for various two-
dimensional convex particles fluids such as the hard ellipse,
diskorectangle, cut disk, and finally hard needle fluids. The
unit length is taken to be that of the underlying hard disk
diametero (for the hard needle case it is the needle lepgth
The various molecular parameters are the aspect katibe
rectangle lengthL*=L/o, and the cut disk thickness FIG. 1. Density-dependent coefficients for the pair DCF, for the
d*=d/o. The reduced density is defined ,agngZ and two models discussed in the text, in the case of the hard ellipse fluid
the packing fraction isyp=pS, whereS is the particle sur- for the aspect ratioc=4. The solid lines and the dotted line are,
face. respectively, for the first and second approximations. The letters

One of the ingredients common to both the geometricahe|p identify the coefficients corresponding to the surf&ge (ine
DCF and the integral equation methods is the Mayer func(or perimeter (L), and the Mayer functionNl) terms.
tion, whose projectiong};"(r) must be calculated numeri-
cally. For the molecular interaction symmetry considere
here, only even values ah andn are retained5]. Expan-
sion terms up tan,m<6 were retained, as in the previous

work [5], where it was found that this choice was sufficient ent behavior at hiah densities. In particular. the Maver co-
to ensure that the numerical solutions of the integral equatioﬁ - 9 - In partic ' y
efficient yo for the second approximation becomes much

were not affected by the truncation of the rotational invariantI A0 .
expansion. The numerical calculation of tHg'(r) has been arger in this regime. Consequently, from Hgg) one sees
P ‘ that the second approximation will predict an orientational

outlined in Refs[5] and[16]. . > ; i )
. . instability at a density lower than that of the first approxima-
NPT and NVT ensemble Monte Carlo simulations were tion. This last point is in disfavor of the second approxima-

conducted for both the diskorectangle and cut disk fluids;; : . X .
diskorectangles of rectangle lengths=1, 2, and 5 and cut tion, as the first one already tends to predict orientational

disks of thicknesses ranging frodt = 0.1 to 0.5. The num- instability densities lower than those predicted by computer

ber N of molecules in the central box was around Z2€e simulations(see Fig. 5 and the discussion bejow
exact number varies with the shapes and the aspect ratio,
according to the maximum packing possibilityn all cases,
equilibration runs were about 10 000—20 000 steps and the The pressures for fluids of the ellipses of aspect ratio
productions were run from 50 000—200 000 steps in som&=2, 4, and 6 calculated from E@24) are shown in Fig.
cases. Long runs were needed, for example, in the case &(a), together with the MC results of Cuesta and Frenigl
very elongated shapes, mainly to determine if the fluid washe hard disk results=1) are also shown. The nematic
nematically ordered. Indeed, in such cases, it was found thdiranches are shown as filled circles. One sees that the agree-
the nematic order of the fluid was lost very slowly in the ment is quite good at small to medium densities for all elon-
course of the runs. No detailed study of the size dependenagation and deteriorates for high densities and large elonga-
on the order parameter was done here, however, nor were thien. At high densities the theoretical pressures are always
phase transitions located. The aim of the present work wasbove that of the numerical ones. This feature must be linked
only to provide the pressures and the pair correlations in théo the fact that the higher-order virial coefficients are smaller
isotropic phase. In some cases, nematic phases were exian those obtained from Ed26). In particular, it was
plored and particularly the 2D analog of the cubic phase foshown that for large aspect ratiGthe hard needle case, for
the cut disks was also tracked to some extent, which is disexample, some of the higher-order virial coefficients could
cussed below. become negativE2]. This is in contrast to Eq(26), which
Figure 1 shows a comparison between the densitypredicts strictly positive virial coefficients at all orders. The
dependent coefficientg, of the two approximations intro- compressibility pressures from the PY and HNC integral
duced in Sec. Il for a fluid of ellipses of aspect rakie=4.  equations are also shown for the isotropic phase. The pres-
One can see that the surface term dominates totally the lingures for diskorectangles are given in Figb)2and for cut
(perimetey and Mayer terms at high densities. Also, the sur-disks in Fig. Zc). Our Monte Carlo results for the pressures

dface termsyg from both approximations are closer to each
other. The direct consequence is that the corresponding
DCFs are quite similar in the high-density regime. On the
contrary, the two other termg,_ and o tend to have diver-

A. Pressure
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FIG. 2. (a) Equation of state 8P/p) k versus the density« for the hard ellipse fluid and for aspect raties- 1, 2, 4, and 6. The solid
line is for the first approximation in the isotropic phd&a. (20)] and the dotted line is for the corresponding nematic phase. The dashed
lines are compressibility route pressures from the(@per curvgé and HNC(lower curve approximations. The filled circles are simulation
results from Ref[2]. (b) Equation of state for the hard diskorectangle fluid and for rectangle ldrigthl, 3, and 5 ¢=L*+1). The
symbols are the same as(a. (c) Equation of state for the hard cut disk fluid and for thicknestes 0.5, 0.4, 0.2, and 0.1=1/d*).
The symbols are the same ag@). (d) Equation of state for the hard needle fluid. The symbols are the samdasTie dots and squares
are from Ref[21] (filled circles for the isotropic phase and open circles for the nematic phHBse Onsager and KT transitions are shown
by arrows.

are given in Tables | and Il. The general features are come(1,2)=fy(1,2). Hence the SPT EOS is lower that the MC
parable to those of Fig.(8). It seems that the SPT geometri- results[21] at medium densities. In particular, we observe
cal results become worse as the aspect ratio increases. Weat the isotropic-nematic transition predicted by our ap-
see that, on the contrary, the HNC compressibility resultproach is identical to the Onsager predictiopat=4.71. As
become in closer agreement with the simulation resultsgconcerns the integral equations results, we see that the HNC
whereas the PY results are always too high. We note that fazompressibility route gives nearly perfect results, whereas
both these theories, the density range for the isotropic phasbe PY theory gives pressures that are too high. One must
decreases strongly with the increase of the aspect ratio. note also the very small density range over which the two
These two tendencies are more striking when examiningheories can be solved. This range is particularly small for
the hard needle case in Fig(d® In this case the SPT geo- the HNC theory(smaller than the Onsager transition den-
metrical variables ar&=0 and/=2. The second virial co- sity), whereas for the PY theory the density range extends up
efficient is exact againg,=1/27), but all higher-order co- to values larger thap* =10, which are larger than the
efficients are zero. As a consequence, the geometrical modkKbsterlitz-Thouless(KT) transition density. This behavior
is reduced exactly to the Onsager model, withhas some similarities to the solution of the two integral equa-
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TABLE 1. Compressibility factorZ=gP/p versus density metrical approximation for the DCF interpolates quite nicely
p*=pa? for the diskorectangle fluids obtained by Monte Carlo petween the corresponding HNC and PY results. This behav-

simulations. ior is no longer true for higher-order expansion coefficients
of the DCF, although the agreement between the three dif-

L*=1 L*=3 L*=5 ferent approaches is closer than that found for the isotropic

* * *
z P z P z P component. Globally, from the inspection of the components
2.0 0.1569 2.0 0.0600 2.0 0.0331 displayed in Fig. 8), one sees that the HNC DCF is the

3.0 0.2297 3.0 0.0927 3.0 0.0512 Mmost structured of all three, whereas the geometrical DCF is
4.0 0.2636 4.0 0.1125 4.0 0.0663 the less structured one. One also sees the PY nature of the

50 0.2967 50 0.1306 50 0.0750 geometrical approximation in the relatively close resem-
6.0 0.3227 6.0 0.1401 6.0 00829 blance of features between these two DCFs. The agreement
70 0.3391 70 0.1456 70 0.0005 between these two approximations become better at lower
8.0 0.3486 8.0 0.1596 8.0 0.0968 densities. The same trends are observed for lower and higher
9.0 0.3605 9.0 0.1971 9.0 01021 aspect ratios, although the difference between the geometri-

100 0.3655 100 0.2009 100 01075 cal D_CF and the tvx(o other approaches deteriorates with in-
creasing aspect ratios.
Figure 3b) shows the DCF for the fluid of hard diskorect-
. . . angles of aspect rati@=4 (L*=3) at densityp* =0.12.
tlops fpr the SD fluid (.)f hard pIate_zIetQZ]_._We return _to th's. One sees that the major trends seen here are similar to those
point in the discussion of the instability of the isotropic observed for the hard ellipse DCF. One can note that the
phase. . . . isotropic component of the geometrical DCF is now closer to
_The nematlc_branches _for_the hard ellipse fluid of aSpeCkhat of the HNC theory. The density and aspect ratio depen-
ratios 4 and 6 in Fig. @ indicate clearly that the present dences are quite similar to that of the ellipse fluid.

D e e Voo ot o Fgure o) show e tree DCES for e faof e o
P ; disks of aspect ratioc=5 (thicknessd* =0.2) atdensity

Loogi\;r;k that the same trend is also true for the other conve>I<J* —15. Now the differences between the gepmetricgl ap-
' proach and the two others are more marked. First the isotro-
pic component is no longer an interpolation between the
HNC and PY results. Then the’X(r) is not in such good

In this section we compare direct and pair correlationagreement with the others. We note that, similarly to the hard
functions obtained from the present theory and the two inteellipse and diskorectangle fluid cases, the differences are less
gral equations. In the case of the pair correlations, comparimarked at lower densities. They also tend to disappear at
sons with computer simulations are also shown. smaller aspect ratios, albeit larger thickness, which makes

Some expansion coefficients(r) of the DCFs for the the shape closer to the hard disk. There are two reasons for
fluid of hard ellipses of aspect ratio=4 are shown in Fig. the differences seen in Fig(c3. First, the cut disk shape is a
3(a) for the densityp* = po®=0.15, whereo is the breadth two-dimensional oblate shap¢he particle axis is perpen-
of the ellipse. The density is chosen to be close to the highesticular to the longer symmetry axiand our investigation of
density for which either of the integral equation could beoblate shapes in three dimensidis] has shown that the
solved. This convention is also adopted for other bodies. Ongeometrical approach was not very good in this case. In fact,
sees that for the isotropic compona®(r), the first geo- there are some resemblances between the behavior of the

DCF componentz® and c% in two dimensions and the
L . i 1000 202 ; H H

TABLE II. Compressibility factorZ=8P/p versus density ~corresponding ones icP° andc®*?in three dimensions. The

p* =po? for the cut disk fluids obtained by Monte Carlo simula- S€cond point concerns the fact that cut disks of thickness

B. Structure

tions. d*=0.2 have a tendency to exhibit a two-dimensional cu-
batic phase as will be shown subsequently, whereas the geo-

d*=0.1 d*=0.2 d*=0.4 d*=0.5 metrical approach predicts an instability towards a nematic

z p* z p* z p* z p* phase. This reflects the density couplings that builds up into

the PY and mainly the HNC DCFs and cannot be represented
15 08161 12 02773 2.0 06639 12 0.1872 simply as a linear function of the Mayer function as in Eq.
20 12948 15 05873 30 09493 15 03711 (14). We return to this point in the discussion of the orien-
30 23244 20 1.0145 40 1118 2.0 0.5679 tational instability of the isotropic phase. A similar conclu-
40 32565 3.0 15213 50 12599 3.0 0.8039 sjon was also reached in R¢fL8] in the study of the cut
5.0 4.0622 4.0 19627 6.0 13691 4.0 0.9475 sphere fluids.

6.0 47286 5.0 22210 7.0 14658 50 1.0697 The pair correlations for the three types of fluids encoun-
7.0 52113 6.0 25547 8.0 15499 6.0 1.1430 tered above are displayed in Figgaj-4(c) together with
80 55415 7.0 27611 9.0 1.6069 7.0 1.2339 computer simulations results. For the hard ellipse fluid only
9.0 6.1870 80 29655 10.0 1.6784 8.0 1.2818 the componentg™ ™(r) for m=0, 2, and 4 are available
10.0 6.3837 9.0 3.0786 11.0 1.7533 9.0 1.3230 from computer simulationg2,5]. These projections are com-
11.0 6.7888 10.0 3.1989 12.0 1.8053 10.0 1.3722pared with the three theoretical results for the fluid of hard
120 7.0356 12.0 35186 13.0 1.8439 11.0 1.4148c¢€llipse of k=4 at densityp* =0.152 in Fig. 4a). As men-
tioned at the end of Sec. Il B, the pair correlation function
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(c) ’ r/a

FIG. 3. (a) Expansion coefficients™"(r) of the pair DFC for the hard ellipse fluid of aspect ratie 4 at the density* =0.15. The solid
line is for the first approximation, the dotted line for the HNC theory, and the dashed line for the PY theory. The projection imgiges (
are indicated on the corresponding panels. The vertical labeling for the projections (0,2) ar) (8, the same, and similarly for
projections (0,4), (4+4), and (6;-6). (b) Expansion coefficients™"(r) of the pair DFC for the hard diskorectangle fluid fof =3 at the
densityp* =0.12. The lines and labeling conventions are the same @.ift) Expansion coefficients™"(r) of the pair DFC for the hard
cut disk fluid ford* =0.2 at the densitp* =1.5. The lines and labeling conventions are the same &.in

g(1,2) corresponding to the geometrical DCF will not bedensity p* =0.078. Globally, features similar to that ob-
zero for overlapping configurations of particles 1 and 2. Thisserved above for the hard ellipse case. We note that the HNC
flaw of the geometrical model was also mentioned in the 3Dresults tend to exaggerate the first peak, which shows the
cas€g 13]. This feature of the pair correlation function can be nearest-neighbors alignment tendency, whereas the PY re-
clearly seen in Figs.(4)—4(c), at least in the/o<1 region.  sults totally miss this feature. The PY theory is in better
However, it is surprisingly PY-like in other regions, mainly agreement in the range where particles have a loose perpen-
for the isotropic componerg®(r). The fact that this theory dicular alignment, as seen gt ~* aroundr* =3. It seems
is able to reproduce the isotropic nematic instability can behat the HNC theory overemphasizes the ordering tenden-
seen in the long-range correlations growth of tife %(r) cies, whereas the PY theory misses the same tendencies. The
component, in accord with the computer simulation andgeometrical approach indicates a global ordering from the
HNC results, but at variance with the PY results. In addition,g? 2 component. These results are corroborated by the ori-
one notes the oversized first peak, very much HNC-likeentational instability analysis.
which again experiences the strong short-range alignment.  The case of the hard cut disk fluid is displayed in Fig) 4
Figure 4b) shows more components of the pair correla-for the thicknesgl* =0.2 and density* = 1.5, which is not
tion for the fluid of hard diskorectangles far=6 and at really a high density. This choice was dictated by the fact
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FIG. 4. (a) Pair correlation expansion coefficiengS'"(r) of the pair correlation function for the hard ellipse fluid of aspect ratio
k=4 at the densityp* =0.152. The solid line is for the first approximation, the dotted line for the HNC theory, and the dashed line for the
PY theory. The dots are simulation results from Ré&f. The projection indicesni,n) are indicated on the corresponding panels. The
vertical labeling is the same for projectiogé2, g*~*, andg®~®. (b) Expansion coefficientg™(r) of the pair correlation function for the
hard diskorectangle fluid fdt* =5 at the density* =0.078. The lines are the same agah (c) Expansion coefficientg™"(r) of the pair
correlation function for the hard cut disk fluid fdi* = 0.2 at the densitp* = 1.5. The lines are the same aq&. (d) Expansion coefficients
g™"(r) of the pair correlation function for the hard needle fluid at the density 2.5. The lines are the same as(@ and the filled circles
are our computer simulation results.

that the PY theory had no solutions for densities abovendicating clearly that there is a cubatic-type ordering at least
p*=1.59. This is sufficient, however, to point out the par-in the short-range region. This picture is also supported by
ticularities of this fluid. First, we observe the same featureshe snapshots that show a typical “broken book pile” picture
of the geometrical approach as observed in Figa) 4nd  with the short stack piles being locally perpendicular to each
4(b). The PY results are in better agreement with the simuother. This picture is not seen at larget*(=0.5) or lower
lations than any of the two other results, exceptg®tnear  (d* =0.1) thicknesses. The question whether or not this type
r* =0.35. One sees also that none of the angular component$ order is long ranged is difficult to answer mainly in the
develop long-range correlations at this density. The shorttwo-dimensional systems where any long-range order is
range cubic-type ordering that is particular to the thicknesglagued by defect formations and bindings. We leave this
d*=0.2 is already visible at this density, particularly in the question open until further dedicated studies.

g2 2(r) component, which shows a first broad peak indicat- Finally, the hard needle case is shown in Figd)4We

ing a piling of two cut disks. Then one observes a largerecall that here the geometrical approach predicts that the
negative small peak, indicating a perpendicular ordering oDCF is equal to the Mayer function and thus is independent
another short stack pile of two cut disks. This is corroboratedf the density. The only density dependence of the corre-
by the g*~4(r) component, which has a positive secondsponding pair correlation comes through the OZ equation,
peak. These tendencies develop strongly at higher densitietius explaining the very weak density dependence observed
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(b)

FIG. 5. (a) Orientational instability factord ,(m=2, 4, and § versus the packing fraction=pS for the hard ellipse fluids of aspect
ratios k=2, 4,and 6. The solid lines are for the first approximation of the DCF and the dotted lines and dashed lines correspond,
respectively, to the HNC and PY theory results. For each of the theories, the topmost curvenis8oand the lowermost fom=2. The
arrows indicate the isotropic-nematic transition densities as found by the computer simulaeari&]). (b) Orientational instability factors
A, for the hard diskorectangle fluids for* =1, 3, and 5. The lines are the same asan (c) Orientational instability factord , for the
hard cut disk fluids fod* =0.5, 0.2, and 0.1. The lines are the same a@)jn(d) Orientational instability factord ,, for the hard needle
fluid. The lines are the same as(i@.

in Fig. 4(d). The HNC result are surprisingly accurate, which (28) for the second approximation is too lar¢eee Fig. 1

is true for all densities for which this theory could be solved.compared to that of the first approximation. The isotropic-

This finding is in agreement with the good results obtainechematic instability functions\,, for the hard ellipse fluids

for the pressure. are plotted in Fig. &) versus the packing fraction=pS (S

is the surface of the ellipsefor the three aspect ratios

k=2, 4, and 6. The HNC and PY results are also shown,

respectively, as dotted and dashed lines. The instability den-
The A, for all three type of fluids are displayed in Figs. sity is the solution ofA ,,=0. Usually, form=2 such a so-

5(@)-5(c). Only the first approximation for the DCF was re- |ution indicates an orientational instability towards the nem-

tained here, as the second one predicts instabilities at densitic order. For highem values more complex ordering

ties far too low, due to the fact that thg coefficient in Eq.  tendencies could be destabilizing the isotropic phase. The

C. Orientational instability of the isotropic phase
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case of the integral equation is more complex. Thefrom  ratios larger tharnk=7. We could observe unambiguously
the solution of these equations stops before the zero value sich a phase fok=8. This particular fluid certainly de-
attained because no numerical solution is found beyond aerves a more thorough study in the future. Indeed, our find-
certain value of the density. The reason why the solution isng supports the idea that fluids of hard diskorectangles have
lost is not clearly known. Such behavior is also met in othera stable nematic phase for particle aspect ratio larger than
cases such as liquid-gas coexistef28] or Coulombic flu-  that needed for the case of fluids of a hard ellipse. This offers
ids [24]. It is important to note that the loss of the numerical some similarities to the three-dimensional case, where the
solutions is totally independent of the accuracy of the algonematic phase for spherocylinders was observed for aspect
rithm used in each case and is believed to stem from theatios larger than those for ellipsoif7].

mathematical nature of the PY and HNC closu2g]. It is The fluid of hard cut disks also has interesting features.
customary to consider that the extrapolationof to zero  Figure Hc) shows again that the geometrical approach pre-
gives the density at the limit of stability of the isotropic gjicts nematic-type orientational instabilities for thicknesses
phase. d*=0.2 andd*=0.1 (aspect ratios of 5 and 10, respec-

We recall that computer simulations of Cuesta and Freng e\ However, the HNC integral equation shows a curious
kel [2] for the same fluids have shown the existence of an. ossover ofA, and A, at thicknessesl* =0,2, which is
4 =0,Z,

isotropic-nematic transition only for ellipses of aspect ratios - .
4 and 6. It is obvious from Fig.(8) that the fluid of ellipse very much reminiscent of that observed for the cubatic or

for k=2 has no orientational instabilitie@he A, curves dering n thre_e dlmenS|or{i_8]. The confirmation by com-
extrapolate to zero beyong=1). For thex=4 andx=6 puter_smulgnon of the. existence of such an ordgr in the
cases we note that both HNC and the geometrical approactM"O_'d'mens'onaI case 1S beyonq. the _Scope (.)f th|§ work,
indicate an orientational instability towards the nematic'@inly because the phase transitions in two dimensions are
phase and at densities quite close to each other. These valJdg@gued by the defect binding phenomena, which make the
are much smaller than those predicted by computer simulggMall-scale studies very cumbersome. However, snapshots
tions. We find here that in the case of 4, 7,,s=0.567 for from our computer s_|mulat|0n studid®8] reveal that a
the geometrical approach, while the computer simulatioffuPatic-type order exists, at least locally, as one observes a
predict 7,~0.74. Similarly, for x=6 we find broken book |_o|le type of picture, W|th_ short piles bemg lo-
mins=0.424, while the simulations prediof,,~0.59. We c_aI_Iy perpendicular io each other. This tyfe of orde_r is not
note, however, that the analysis of the computer simulation¥iSiPle for Ialrger 0*=0.5) or smaller ¢*=0.1) thick-
is based on the apparition of defects binding phenomend)$S3€S: Fod*=0.2, the analysis of the long-range part of
which are not accounted for in the theories discussed herd. (1) shows tgf‘tzth's function has a long-range part grow-
The comparison with other approaches such as density funé?9 faster tharh*=“(r). As our simulations are performed
tional theories25] shows that the instability densities pre- for at most 200 particles, it is difficult to speak of long-range
dicted here are larger than those found in such approacheg€havior. However, this analysis support the short- to
which makes the present approach even more appealing. [R€dium-range picture observed in the snapshots.
particular, such approaches generally predict transitions for It IS interesting to ask whether the geometrical theory can
all aspect ratios, a feature that is unrealistic. As noted in RefPreédict such an instability. In view of Ed28), a simple
[5], the PY theory predicts no orientational instabilities at anestlgatlon of the Mayer function expansion coefficients
unreasonably high-density valyesa feature already ob- fy "(k=0) is sufficient. In Fig. 6 we have plotted such
served in three dimensioh26]. We note another feature that values form=0, 2, 4, and 6 versus the thickned$. One
was also observed in previous studies: The HNC theory presees that fod* =0.44 the geometrical approach will predict
dicts orientational instability from alh,=4 at the same the cubatic ordering. Fod*=0.61 one will eventually ob-
density. This feature is almost a signature of the HNC beserveAg=0 before the other two modes. A similar feature
havior for anisotropic fluids. was also observed for cut sphefés] where the geometrical
We turn now to the fluids of diskorectangles. Figuf)5 approach also predicted cubatic ordering for unrealistic large
shows features similar to those of Figap We note that for  thicknesses. We find finally that the PY theory predicts again
diskorectangles of aspect ratio=4 the geometrical theory no orientational instabilities.
predicts an instability af;,s=0.663. However, in this case, We now examine briefly the case of the hard needle fluid
the curvature of thé\, function from the HNC theory does in Fig. 5d). Clearly the HNC theory predicts a nematic in-
not allow an unambiguous extrapolation to zero. In fact, thestability at the densityp/L~3, whereas the geometrical
analysis of the long-distance behaviortof ?(r), which is  theory predicts the same type of instability at exactly the
responsible for the orientational destabilization of the isotro-Onsager density/L=4.71. This last point is no surprise
pic phase, shows that in this case the function has no longsince the geometrical DFC is reduced to the Mayer function
range tail. Thus the HNC theory does not predict an orientain this limit. The linearity of all the modea4 ,, with respect
tional instability. This seems to be in accord with our to the density is also a direct consequence of this fedtae
computer simulations, where we could not stabilize a nemEqg. (28)]. We note that, in the case of the HNC theallthe
atic phase at high densities. For the case6 the geometri- modes seem to point to the same instability density. This is a
cal approach predicts;,s=0.521. Similarly to the previous typical feature of the HNC theory. The PY theory, however,
case, the extrapolation to zero of the curve from the HNC  shows a very different concavity for all the modég,, and
theory cannot be obtained accurately. In accord with thieven if very small values of the modse, can be achieved, it
latter finding, our computer simulation could not find a stableis not possible to conclude any solution for the orientational
nematic phase. The nematic phase seems to appear for aspestability A,=0. Similarly to the case of the hard platelet
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¢272(r), the component of the DCF responsible for the ori-
entational instability.

However, the geometrical theory fails to account for the
ordering features in the sense that it always predict an orien-
tational instability of the isotropic phase at a density too
small. This feature, which was already true in the three-
dimensional case, seems worse in two dimensions. It could
be explained by the fact that the ordering in two dimensions
is strongly influenced by defects, a feature that is not ac-
counted for in the theory developed herein.

The present work raises some questions about the dia-
grammatic nature of the three theories compared herein. The
DCF as expressed by E¢) contains only pair terms. All
the higher-order density correlations are contained inthe
coefficients. In view of the poor agreement observed for very
anisotropic particles or oblate shapes, one is led to think that
more than pair correlations must be incorporated in the
T S RS RS R spatial-variable-dependent factors. This is particularly true
0 02 04 06 08 1 when examining the case of hard cut disk fluids as well as

L' the three-dimensional case of cut sphdrEg]. In order to
describe the short-range cubatic-type piling effect one must
account for more than three particle correlations. Clearly, the
HNC theory does s¢also true in three dimension$8]). The
case of the PY theory is more complex. Indeed, the PY DCF
contains the Mayer function in the low-density limit expan-
sion, as it gives the correct second and third virial coeffi-
cients. One would then expect this theory to predict the cu-
fluid in three dimensions, this extreme example of a two-batic ordering, at least for large thicknesses. This, however,
dimensional fluid can serve as a test of the thedi22. In s not the casénot even in three dimensiord8]). So the
the present case, one sees that the HNC and PY theories havigher-order density expansion terms of the PY DCF must
a similar low-density behavior, which is very different for somehow destroy the effect of the Mayer function. This ar-
the geometrical DCF results. One is then tempted to say frorgument is even more true when examining the simpler case
Eg. (28) that the density-dependent factgg is not correctly ~ of the nematic instability, which is also contained in the
accounted for by the approximations described here. Thidlayer function(at an Onsager level of approximation for

remark opens a route for systematic corrections of the gecexample and consequently in the geometrical DCF, but not
metrical approach22]. in the PY DCF. It would be of fundamental interest to find,

at a diagrammatic level, why the geometrical approach, al-
though simpler than the PY approximation, provides a better
description of anisotropic fluids, in closer agreement with the
From Sec. Ill it seems quite clear that the geometricaHNC theory. In particular, it is interesting to know whether
approach to the DCF and the thermodynamic properties fogorrecting the geometrical DCF in order to account for a zero
two-dimensional fluids of hard bodies can be successfullyair correlation inside the hard core might increase or de-
applied for moderate aspect ratios and densities and to @€ase the accuracy of this method. The systematic study of
lesser extent for larger densities and aspect ratios as well. @treme models such as the hard needles or the hard platelets
is important to note that the pair DCF is not entirely written Py these theories also helps answer some of the unanswered
as a sum of convolution of weight functions, due to the factduestions. These answers in turn might help shed some light
that it contains the true Mayer function. The latter cannot be" the criticality of the two integral equation theories, & sub-
written as a convolution of weight functions, except for few JeCt that has recently gained renewed interest.
very special cases, such as hard disks or rigidly parallel par-
ticles[16]. Although being PY-like by construction, the geo- APPENDIX A: WEIGHT FUNCTIONS
metrical DCF also has some desirable features from the HNC
theory, such as the prediction of the orientational instability, In what follows we give the formal expression for the
a feature totally absent from the PY theory. Moreover, thisexpansion coefficients of the surface weight'(1) and the
approach is numerically simpler than the integral ap-line weightw("(1), which are essential for the development
proaches, an additional attractive feature to bear in mind if our theory. The expressions are restricted to particles hav-
the case of application to more complex systems, such dasg a uniaxial symmetry because all the convex objects stud-
mixtures and solid-liquid interfaces for example. Indeed, théed here have the same symmetry. We recall that
present approach allows the calculation of a particular exparw(®(1)=w(®(r,u), whereu is the orientation of the mol-
sion coefficientc™"(r) without having to compute the full ecule and is the radial vector to the surface of the particle.
DCF or the pair correlation function. In this way, one could First we develop the weights in the general basis set of rota-
simply extract the desired orientational properties, such asonal invariants Eq(15). One has, using the simplified no-
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FIG. 6. k=0 values of the Fourier-Bessel transforms of the
Mayer function expansion coefficien?ﬁ}’m for the hard cut disk
fluid, versus the cut disk thicknesl . The differentm values are
indicated next to the corresponding curves. Note thatnhe0
values are multiplied by 10.

IV. DISCUSSION AND CONCLUSION
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tationw{®?=w{%) , an expansion identical to that of E), L)

Vv%><k>=—ikTmH[vv(r#)]—(mH)Tm{—m, (A5)
r

WD) =w@(ru)=2> w@(r)¥m(6,,6,), (Al)
m where7,,(F) is the Fourier-Bessel transform of order of

the functionF(r) [5,29].
whereW™(g, ,0,)=exp(mé) and 6= 0,— 6, . We see that

the weight functions depend only on the relative angle be-
tweenr andu. Using the orthogonality of the invariants one
can invert this relation to get the{®(r),

APPENDIX B: WEIGHT FUNCTIONS FOR FEW 2D
CONVEX BODIES

The surface and line weights, together with the SPT geo-

(@) 1 (@) mo metrical parameterésurfaceS and perimeter”), are given
Wiy '(r)= ﬂf do w(r,)W(0). (A2)  herein. Both weight functions can be expressed as
When the definitions of Eq.13) are introduced in EQA2) wS(r)= Eg(r)jo(mg(r)), (B1)
one gets the desired expansion coefficients. Because the " ™

weight functions are distributions, some care should be taken
before performing the angular integration. In all the results wH(r)=v(r)co§me(r)], (B2)
below R(0) represents the distance from the center of the
particle to its surface and is the angle between the symme-
try axis of the particle andR. For all the convex objects
studied in the present woilR(6) is a simple analytical func-
tion of the anglef and the reciprocal functioi(R) is easily
obtained(see Appendix B

For the surface weightwS(r,8)=H(r,6)=H(R(6)
—r), whereH(x) is the Heaviside step function, which is
unity only for x=0. Using the symmetry properties of the
particle, the integral in Eq/A2) can be performed to give For the aspect ratioxk one has S=w/4x and

/=2k[&2dy\Jco(y)—sirA(y)/i2,

wherej, is the zeroth-order spherical Bessel function. The
functions 6(r) andI(r) are specific to each convex bodies.
All the distance units are reduced with respect to the diam-
etero of the disk to which each of the convex bodies goes in
the spherical limit.

1. The hard ellipse

2
Wi (r)= — 8(R)jo(ME(R)), (A3) { « [ 1 ,
6(r)=arcco 1 1 peef (B3)
wherej(x) is the zeroth-order spherical Bessel function.
The line weight is more delicate as it involvesddunc- 4 1+ k2 ar2
tion. In this casew(r,8) =t(r, ) S(R(6) —r), wheres(x) w(r)= _\/ _ (B4)
is the Dirac distribution and the function m N (4r2—1)(k?>—4r?)

t(r,0)=1+ (1/r?) (dr/d6)®. The integral in Eq(A2) can
be evaluated by making the formal variable change

. 2. The hard disk tangl
r—o(r). After some algebra one finds € hard dskorectangle

For the rectangle length (aspect ratiok=L+1), one

has S=#w/4+L and /=w+2L. The expressions for the
wb(r)= E t(r,e(R))coime(R)], (A4) weights depend on the disk or rectangle parts. For
™ dR/d@ 1<r<./L?+1/2 one has
where it is understood that the substitutiosr R must be 1
done after the calculations involvirg(6) are done. 6(r)=arccos\/1— a2’ (BS)

Appendix B gives explicit expressions for the weights for
the particles studied in this work. The convolution products

in Eqg. (18) are evaluated through the numerical Fourier- 2 [5r?-1

Bessel transforms of the weights as evaluated above. In the v(r)=— ar2—1’ (B6)
case of the line weight, integrable divergence may appear at

the R values corresponding to the anglg=0 and/or ——

0=m/2. They simply correspond to the properties of theand foryL"+1/2<r<(L+1)/2 one has

slopedR/d# at these points and are found for particles such by o

as the hard ellipse or the diskorectangle. These divergences 0(r):arcco€ are+L _1) B7)
are handled exactly by considering the Fourier-Bessel trans- 4ArL '

forms of the integral of the line weights, which are well

defined functions[16]. The explicit relation linking the

Fourier-Bessel transform of the line Weig\hfﬂ”(r) and its »(r)= E 1 . (BY)
integral W) (r) is T J[4r2—(L+1)?][(L—1)?—4r?]



PRE 58 DIRECT CORRELATION FUNCTIONS IN TWO. .. 1947

3. The hard cut disk T d
o(r)= 5= arcco% E) , (B9)
For the cut disk thickness (aspect ratioc=1/d) one has
S= 7/4— (1/2)arctan(/1/d?— 1)+ (d/2) 1 —d?, /= y(r)= —u. (B10)
—2arctan(/1/d°—1)+21—d?, m\arZ—d?
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