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Direct correlation functions in two-dimensional anisotropic fluids
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Laboratoire de Physique The´orique des Liquides,* UniversitéPierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, Franc
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A geometrical approximation for the direct correlation of two-dimensional multicomponent fluids is intro-
duced herein. This approximation is semianalytical and involves the knowledge of elementary geometrical
properties of a single particle. The formalism is applied to anisotropic two-dimensional fluids of various
particle shapes such as hard ellipses, diskorectangles, and cut disks of various size ratios. The particular case
of the hard needles fluid is also investigated. The accuracy of the approximation is tested by comparing the
equation of state and the correlation functions to those obtained by integral equation techniques and Monte
Carlo simulations. In almost all cases these comparisons are found to be quite satisfactory and even excellent
in the case of moderate size ratios. Both the isotropic and orientationally ordered phases are investigated and
particular attention is paid to the orientational stability of the isotropic phase. The cut disk fluid has a particu-
larly interesting long-range order for thicknesses around 0.3, which is very much reminiscent of thecubatic
order observed in the corresponding three-dimensional case of cut spheres. This feature observable by both the
simulations and the hypernetted chain integral equation is also predicted by the present geometrical theory, but
at larger thicknesses.@S1063-651X~98!07408-X#

PACS number~s!: 61.20.2p, 61.30.2v, 64.70.Ja, 68.15.1e
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I. INTRODUCTION

Many thin films of liquid crystalline substances for
quasi-idealized two-dimensional liquid crystalline phas
@1#. If one concentrates solely on the interactions based
steric considerations, which is quite reasonable for th
molecules, which are mostly rodlike, then one can resor
two-dimensional convex shapes in order to model such
ids. This simplification certainly captures the essential of
excluded volume interaction contribution to the physics
such fluids. This is the point of view we adopt here by co
sidering two-dimensional fluids made of several hard con
shapes such as ellipses, diskorectangles~made of two half
disks encapsulating a rectangle!, which are the two-
dimensional equivalent of the spherocylinders, and cut d
~a disk from which two equal caps have been removed fr
top and bottom!, which are similar to the cut spheres in thr
dimensions. These simple shapes can be described with
parameters such as the aspect ratio for the ellipse, the d
eters of the disk, the length of the cylinderL in the case of
the diskorectangle, and the thickness of the cut diskd. Un-
like the hard disk fluid, which has been abundantly studied
the past by both computer simulations and various stand
theories of liquids, other convex shapes have received l
attention. A notable exception is the hard ellipse liqu
which has been studied by computer simulations@2#, density
functional theories@3#, and integral equation methods@4,5#.

Although being simple models of two-dimensional liqu
crystalline phases, the hard ellipse fluids have surprisin
interesting properties. The computer simulations have
vealed that for aspect ratios large enough to give a liq
crystalline phase~about 4! the isotropic-nematic transition
was, as expected, second order for large aspect ratios~about
6!, but first order for smaller ones. The study of phase tra
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sitions in two-dimensional systems is still full of controve
sies. For example, the question about the order of the fl
solid transition of the hard disk fluid is still unanswered@6,7#
~one first-order transition or two second-order transitions
a hexatic phase!. The basic mechanism for the transition
two dimensions is based on the unbinding of defects form
in the ordered phase, following a Kosterlitz-Thouless@8#
type of scenario. The detection of such transition by fin
size computer simulation techniques is not straightforw
@2#. It is not the aim of the present work, however, to get in
such considerations. Rather, the focus is on standard equ
rium theory of liquids, more precisely, the determination
the equation of state~EOS! and the structural features of th
isotropic phase.

An essential ingredient of the theory of fluid is the dire
correlation function~DCF!, which allows the determination
of the mechanical stability~the compressibility! and the ori-
entational stability~the Kerr constant! of the fluid, as well as
the pair correlation function to which it is linked by th
Ornstein-Zernike equation@9#. Unlike the pair correlation
function, which has a physical meaning and can be meas
by computer simulations, the direct correlation function h
only a formal definition relating it to the second-order fun
tional derivative of the free energy@9#. The Percus-Yevick
analytical solution in the case of the hard spheres and m
tures is not much help in this matter. Such a solution is
known for even dimensions@10#. Recently, Rosenfeld@11#
has put forth an illuminating geometrical interpretation of t
Percus-Yevick solution for the case of hard spheres that
lows one to express the direct correlation function as a se
rable function of density and various geometrical functio
of the overlap between two hard spheres. The most appea
feature of this formalism is that these geometrical functio
are expressed solely in terms of various weight functio
depending on the individual molecular geometrical prop
ties. Rosenfeld also proposed an extension to two dimens
1933 © 1998 The American Physical Society
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1934 PRE 58ANTOINE CHAMOUX AND AURELIEN PERERA
@12#, obtaining an analytical expression for the DCF for ha
disks and mixtures.

The straightforward extension of this fruitful approach
more general convex shapes was shown by us@13# to be
impossible without fundamental alterations of the origin
approach. The main drawback came from the isotropy of
underlying weight functions in the long-wavelength lim
which in turn led to the isotropy of the DCF in the same lim
with the consequence of the inability of such a DCF to
count for any orientational instability of the isotropic phas
This major flaw was corrected by accounting for the corr
zero-density limit of the DCF, which is the Mayer functio
@13#. This point is crucial in the extension of the theory
two-dimensional systems. Indeed, while the Mayer funct
of hard spheres can be written as a combination of we
functions, this is not the case for the two-dimensional h
disk fluid @12#. Instead of introducing an approximate May
function that can be written as a combination of weights a
Ref. @12#, we directly introduce the correct Mayer functio
The resulting approximation~and a variant! is presented in
detail in the present work.

The remainder of this paper is set up as follows. In Sec
we present the semi-analytical DCF approximation and
resulting thermodynamics for the general case, as wel
some details concerning our Monte Carlo simulations a
integral equations methods. Our approach of the orientat
ally ordered phases is also discussed in this section. Se
III contains our results for several anisotropic fluids and
comparisons of the thermodynamic and structural proper
with those obtained from the simulations and integral eq
tions. Finally, in Sec. IV we gather our conclusions and p
spectives.

II. THEORY

A. The geometrical approximation for the DCF

The complete version of this theory for the case of ani
tropic fluid mixtures in three dimensions was presented i
previous article@13#. We consider aninhomogeneousmix-
ture ofN component fluids. The starting point is to write th
excess free energy densityF as a functional of a set o
inhomogeneous weighted densitiesr (a)(1), which are func-
tion of both the positionrW and orientationV of particle 1.
The resulting excess free energy can be written as~with
b51/kBT, the inverse Boltzmann temperature!

bFex@r#5E d1 F@$r~a!~1!%#. ~1!

This set of inhomogeneous weighted densities implies
exact knowledge of the fundamental geometrical measure
weights functionswi

(a)(1) for each particle1 belonging to
the speciesi :

r~a!~1!5(
i
E d2 r i~2!wi

~a!~12!, ~2!

where the sum is carried over all speciesi andr i(1) is the
number density of speciesi for the inhomogeneous system
The shorthand notationwi

(a)(12) stands explicitly for

wi
(a)(r 1

W2r 2
W ,V1). Then-body DCF can be obtained formall
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by successive functional differentiations of Eq.~1!. In par-
ticular, for the pair DCF one has

ci j ~1,2!52
]2bFex

]r i~1!]r j~2!

52(
a,b

E d3 Fab~3!wi
~a!~13!wj

~b!~23!, ~3!

where we have used the same shorthand nota
for the weights as in Eq.~2!. The notation Fab(3)
indicates the functional second derivativeFab(3)
5]2F/]r (a)(3)]r (b)(3).

In order to go further, the choice forF and for the weight
functions must be specified. We will adopt here the tw
dimensional~2D! scaled-particle theory~SPT! form @12#,
which is given by the following expression, written here f
inhomogeneous systems:

F@$r~a!~1!%#52r0~1!ln@12r2~1!#1
r1

2~1!

4p@12r2~1!#
.

~4!

In the case ofhomogeneousfluids, the weighted densitie
r (a) are independent of the spatial variable1 and simply
reduce to the standard SPT variablesja ,

r~a!5ja5(
i

r iRi
~a! , ~5!

which are linked to the fundamental geometrical propert
of the individual particle for each speciesi , which are the
surfaceRi

(2)5S, the perimeterRi
(1)5l , and finallyRi

(0)51.
From now on we consider only homogeneous syste

which are our main concern here. Using Eqs.~3!–~5! one can
express the homogeneous pair DCF as

ci j ~1,2!52xSDSi j ~1,2!2xLDLi j ~1,2!1x0F~1,2!, ~6!

where we have explicitly

xS5F225
j0

~12j2!2
1

j1
2

2p~12j2!3
,

xL5F215
j1

2p~12j2!2
, ~7!

x05F205
1

~12j2!

and

DSi j ~1,2!5wi
~2!~1!* wj

~2!~2!,

DLi j ~1,2!5wi
~2!~1!* wj

~1!~2!1wi
~1!~1!* wj

~2!~2!,
~8!

Fi j ~1,2!5wi
~2!~1!* wj

~0!~2!1wi
~0!~1!* wj

~2!~2!

1
1

2p
wi

~1!~1!* wj
~1!~2!,
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PRE 58 1935DIRECT CORRELATION FUNCTIONS IN TWO- . . .
where the asterisk denotes convolution. The most remark
feature of Eq.~6! is the nice decoupling between densit
dependent coefficientsxa and spatial variables through th
geometrical functionsSi j , Li j , andFi j .

We turn now to the determination of the weight functio
and their general properties. The prescription of the o
body functionr i(1) contains the information about the sym
metry of the phase under study. The weights, on the o
hand, by construction, should contain information only ab
the geometry of the particle. Then Eq.~2! tells us that the
weighted densitiesra(1) will carry the same information a
r i(1) about the symmetry of the phase that is studied. O
this point is clarified, one can write down the formal expa
sion of the weights in a basis of rotational invariants. In tw
dimensions, with the choice of variablesrW5(r ,u r) and V
5(u), such an expansion reads~with all the angles chosen in
a laboratory fixed frame!

wi
~a!~rW,V!5(

m
wi ;m

~a!~r !eim~ur2u!. ~9!

The Fourier-Bessel transform of the weight is@5#

w̃i
~a!~kW ,V!5(

m
w̃i ;m

~a!~k!eim~uk2u!, ~10!

with the expression for the transform of the expansion co
ficients

w̃i ;m
~a!~k!5 i mE drW wi ;m

~a!~r !Jm~kr !. ~11!

From the properties of the Bessel functionJm(x) in the limit
x→0 one gets by using Eqs.~2! and ~5!

w̃i ;m
~a!~k50!5dm0R~a!. ~12!

Equation~12!, which is very general and independent of t
symmetry of the phase in consideration, implies two imp
tant points. First, the weights areisotropic in the limit k
→0. This is the same point that was raised in the 3D c
@13#. Taking the Fourier-Bessel transform of Eq.~6!, one
sees that the convolution products become products and
above conclusion leads to the isotropy of the DCF in
same limitk→0. This is clearly an unphysical behavior,
the DCF must account for the orientational instability of t
isotropic phase@14#. This isotropy is common to all orde
DCF’s that can be derived within this formalism. It is impo
tant to note that this flaw of the theory depends only on
fact that we have introduced the weighted densities thro
Eq. ~2!. In view of the present result, it seems that the p
vious success of the theory is applicable only for fluids
spherical particles.

Before we see how this flaw can be corrected, let us ge
the second point, which is in fact a hint to how we can wr
down explicit expressions for the weights. Indeed, Eq.~12!
shows that the weights are linked to the SPT geometr
variablesR(a) in Eq. ~5!. It is then tempting to attribute the
same geometrical meaning to the corresponding weig
Following then our study of the 3D case, we define the v
ume weight as
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wi
~2!~rW,V!5

1

2p
H„urW2RW i~V!u…

and the surface weight as

wi
~1!~rW,V!5

1

2p
A11

1

r 2S dr

du D 2

d„Ri~V!2r …. ~13!

In these equationsRW i(V) is a vector pointing to the externa
perimeter of the particle of speciesi , which is oriented byV
in the laboratory fixed frame. These two definitions have
advantage of satisfying Eq.~5!, although they are not the
unique possible representations that can lead to this re
However, they reduce the corresponding weights for h
disks.

From these definitions we see that the entire weight fu
tion formalism is restricted to two-dimensionalconvex
shapes@it is naturally imposed by the unity of the vecto
RW i(V) for each orientationV, which is not true for noncon-
vex shapes#. The extension to nonconvex shapes is not o
ruled, however, and the generalization of the present form
ism to tangent disks, for example, can be formulated in v
much the same way as for the tangent sphere case in t
dimensions@15#.

Using these definitions, we see that the terms in Eqs.~8!
gather a different geometrical significance.DSi j (1,2) is now
the surface of the geometrical overlap between particle
and 2 belonging, respectively, to speciesi and j . Similarly,
DLi j (1,2) is the perimeter of this overlap area.

As concerns the third weightw(0), although one could
construct a distribution that satisfies the correctk50 limit
@16#, we can see that there is no need to do so. Indeed, in
limit of zero density, the pair DCF must reduce to the May
function f M ; i j (12)5exp@2fij(1,2)/kBT#21, wheref i j (1,2)
is the hard core interaction between particles 1 and 2
respectively, speciesi and j . From Eq.~7! we see that in the
zero-density limit we havexV5xL50 and x051. There-
fore, our approximation leads toci j (1,2)ur505Fi j (1,2).
Clearly,Fi j (1,2), as defined in Eq.~8!, is an isotropic func-
tion in the limit k50 because it is expressed as a product
weight functions. As a consequence, it cannot be equa
f M(1,2), which is fundamentally anisotropic in this limi
Therefore, our approximation for the DCF in two dimensio
is to replace in Eq.~6! Fi j by the Mayer functionf M ; i j (1,2).

In particular, for the one-component system this appro
mation reads

c~1,2!52xSDS~1,2!2xLDL~1,2!1x0f M~1,2!. ~14!

For the isotropic phase, the rotational invariant expansion
the DCF can be conveniently written in intermolecular fram
as @5#

c~1,2!5(
m,n

cmn~r 12!c
mn~u1r ,u2r !, ~15!

whereu ir 5u i2u r andcmn(u1 ,u2)5exp@i(mu11nu2)# is the
rotational invariant of the isotropic phase@5# ~all the angles
being measured in the laboratory fixed frame!. The Fourier-
Bessel transform of the DCF is expanded as
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c̃~1,2!5(
m,n

c̃mn~k!cmn~u1k ,u2k!, ~16!

with the angles now measured in thek frame. The expansion
coefficients are given by@5#

c̃mn~k!5 i m1nE drW cmn~r !Jm1n~kr !. ~17!

The Mayer function and the geometrical functionsDS and
DL can also be expanded similarly. The expansion coe
cients of the latter functions can be derived from Eq.~8!,

D̃Smn~k!5w̃m
~2!~k!w̃n

~2!~k!, ~18!

D̃Lmn~k!5w̃m
~2!~k!w̃n

~1!~k!1w̃m
~1!~k!w̃n

~2!~k!.

This completes the prescription of the geometrical appro
mation for the DCF.

B. A second approximation for the DCF

There is an alternate possibility, similar to the third DC
approximation in three dimensions@13#. In such a model,
one could assume the form of the DCF similar to Eqs.~6! or
~14! and compute thexa coefficients from the virial and
compressibility equations of state. We have shown in R
@13# that this approach gives the Percus-Yevick~PY! solu-
tion for hard spheres when the appropriate equations of s
are used. The method is also applicable here and is det
below. The last coefficientx0 can be determined from th
virial equation@5#

Zv5
bPv

r
511

r

4pE E du1du2@s~12!#2g@s~12!#,

~19!

wheres(12) is the contact distance between two molecu
with orientationsu1 andu2. Assuming that the pair distribu
tion functiong(12) is zero inside the hard core~which is true
for the PY approximation, for example!, one gets easilyx0
as

x05
Zv21

rB2

, ~20!

where the second virial coefficientB2 can be written asB2
5(1/4p)**du1du2@s(12)#2. The first two coefficientsxS
and xL can be derived from two coupled equations. T
equation relating the compressibility~which uses the com
pressibility pressurebPc) to the DCF@see Eq.~23!# gives
directly

xSS12xLl 5
~]/]r!bPc12Zv21

rS
. ~21!

The second equation can be derived from the Ornst
Zernike ~OZ! equation written for zero separation and ide
tical orientations of the two particles. Again, by assumi
that g(12)50 inside the hard core one gets
-

i-

f.

te
led

s

n-
-

xSS1xLl 52
]~bPc!

]r
1x0 . ~22!

These two equations can be trivially solved forxS andxL ,
providing thus the second approximation for the DCF sol
in terms ofZc andZv . In the present case and in the absen
of known analytical expressions for the virial and compre
ibility equations of state, one could use here the SPT E
derived from Eq.~4! as a single input. This is precisely th
method we have adopted in the numerical applications.

There is very little numerical difference between the tw
approximations proposed here. They both yield the S
compressibility by construction~see Sec. II C!. In Sec. III we
show that the first approximation is somewhat superior,
the sense that it yields orientational instabilities in bet
agreement with the hypernetted chain~HNC! and simulation
results. The main drawback of the second approximatio
that it is not straightforward to extend it to mixtures. We al
note that none of these approximations guarantees tha
corresponding pair distribution functiong(12) determined
through the OZ equation will be zero inside the hard co
~except of course in the zero-density limit!. It is not obvious
how this stringent constraint can be incorporated in eithe
our approximations.

We now turn to the calculation of properties such as
equation of state, the instability criteria for the isotrop
phase, and finally our approach of the nematic phase.

C. Thermodynamic properties

From the DCF one can compute directly the compressi
ity of the isotropic phase through the relation

S ]bP

]r D
T

512rC̃00~k50!. ~23!

It is interesting to know if the geometrical approximatio
gives a compressibility that is consistent with the SPT f
energy. The answer is yes because the second virial co
cient, which is correctly given by the geometrical appro
mation, that is,B25S1L2/2p, is also given by the origina
DCF because of the relations22B25 f̃ M

00(k50)5F̃00(k
50), the last one following from Eqs.~18! and ~12!. The
resulting equation of state is then

bP5
j0

12j2

1
1

4p

j1
2

~12j2!2
. ~24!

Similarly, the chemical potential is given by

bm5 lnS j0

12j2
D 1

j2

12j2

1
1

2p

j1
2

j0~12j2!

1
1

4p

j1
2j2

j0~12j2!2
. ~25!

The explicit expression for the pressure allows us to cal
late all the virial coefficients in a single formula
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Bn5Sn211
n21

4p
L2Sn22, ~26!

which is of course exact only forB2.
The orientational stability of the isotropic phase can

derived from the convexity of the free energy@14# and is
described by the positivity of the different modesDm given
by @5#

Dm512r c̃m2m~k50!5
1

11rh̃m2m~k50!
.0. ~27!

For the present model theDm are simply given by

Dm512rx0F̃M
m2m~k50!, ~28!

wherex0 can be evaluated from Eq.~7! in the case of the
first approximation or by Eq.~20! for the second approxima
tion. Usually, the isotropic-nematic transition follows the d
stabilization of the modeD2 , which is the two-dimensiona
analog of the inverse Kerr constant and is known to dive
at the limit of the orientational stability of the isotrop
phase. The divergence ofD4

21 can occur in some cases an
in three dimensions this is linked to the appearance o
cubaticorder @17,18#, which is characterized by short stac
pilings of about four particles, which themselves tend to s
perpendicular to each other. The existence of a tw
dimensional analog of this type of order is an open quest

D. Orientational order

The one-body densityr(1) contains the description of th
orientational order. In the case of positionally homogene
fluid this function will depend only on the relative orient
tion with respect to the global directornW , that is, r(1)
5r(u), where cos(u)5nW•uW, with uW describing the orientation
of the molecule. From Eq.~2! we see that the weighted den
sities ra should have the same angular dependence. H
ever, a closer look reveals that the isotropy of the wei
functions leads to weighted densities that are independen
the orientation of the molecule and Eq.~5! is again recov-
ered. Hence this formalism leads to an identity of the ne
atic and isotropic phases.

If we wish to use the corrected approximation for t
DCF, the weighted density formalism must be abando
and the one-body function must be computed by other m
ods. There is an exact equation that links the one-body fu
tion to the DCF of the correspondinginhomogeneousphase
@9#

]1ln@r~1!#5E d2 c~1,2!]2r~2!. ~29!

From this point two pathways are possible. Either we try
propose an approximate DCF of the nematic phase or we
the DCF of the isotropic phase in the equation above in or
to computer(1). In principle, the DCF of the nematic phas
should reflect the symmetry and the invariance propertie
the phase under study. Here the geometrical DCF brings
here an important issue. Indeed, if the major contribution
the DCF come from properties such as the two-particle ov
e
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lap geometry or the Mayer function, which are independ
of symmetries lower than that of the isotropic phase, t
strongly suggests that a good approximation of the DCF m
also have the same property. If we replace the DCF in
~29! by the geometric approximation, the resulting equat
can be solved@18#, with the result forr(u)5r f (u)

f ~u!5
exp@rW~u!#

Z
, ~30!

where

W~u!5
1

2pE0

2p

du8 f ~u8!c̃~k50,u2u8!, ~31!

with the normalization factorZ5*duexp@rW(u)#. The ther-
modynamic properties can now be derived from the free
ergy of the ordered phase whose excess part can be obta
by the functional integration of the DCF@19# as

f5bFex@r#/V52E E d1 d2 r~1!r~2!E
0

l

dl c~1,2;lr!.

~32!

The ideal part of the free energy is given bybFid@r#/
V5*d1 r(1)$ ln@r(1)#21%. The resulting chemical potentia
and pressure can be derived from the standard therm
namic relationsbm5](bF/V)/]r and bP5r](bF/V)/]r
2bF/V.

E. Integral equation approaches and computer simulations

We have also solved the PY and HNC integral equatio
using the techniques developed in Ref.@5# for various mo-
lecular shapes. These techniques allows to obtain the
DCF and the pair correlation functiong(1,2) from the sole
input of the pair interaction, which is in fact the Mayer fun
tion f M(1,2) for hard bodies. From previous work@5# it was
found that these techniques allow us to obtain an accu
pair correlation function, hence the DCF, for moderate
high densities and aspect ratios. In fact, it was found that
two approximations often bracket the thermodynamic a
structural results obtained from the simulations. These te
niques can thus serve as a test of the geometrical appro
In particular, it is interesting to check if the geometrical DC
is PY-like in all aspects.

Finally, we have also used Monte Carlo~MC! simulation
methods to get the pressures~NPT ensemble simulations!
and some of the pair correlation function projectionsgmn(r )
~in the NVT ensemble!, mainly those corresponding to ind
ces (m,n)5(0,0), (2,22), (4,24), and some others. Th
projections (m,2m) in particular reflect the growth of ori-
entational correlations in the vicinity of densities for whic
ordered phases can appear. The DCF cannot be meas
directly by simulations. One needs to invert the total p
correlation function by using the Fourier-Bessel transform
the Ornstein-Zernike equation@20#. This means that one
must compute all the projectionsgmn(r ) needed for a given
maximum value ofm. Although this method is quite feasibl
for moderate densities~about 20% of the close packing!
when the pair correlation function is not long ranged a
decays within the simulation box length, this is not the ca
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1938 PRE 58ANTOINE CHAMOUX AND AURELIEN PERERA
at higher densities when the density correlations range
exceed substantially the box length. If this is the case,
Fourier-Bessel transforms of the pair correlations canno
handled satisfyingly, as the smallk values are inaccurate. I
order to avoid these complications, we have simply co
pared the pair correlations obtained from the geometr
DCF to those obtained in the simulations. Surprisingly,
spite the fact that these pair correlations are nonzero in
the hard core region, the overall agreement was found to
quite good. The detailed comparisons are discussed in
next section for several model fluids.

III. RESULTS FOR 2D FLUIDS

In this section we consider our results for various tw
dimensional convex particles fluids such as the hard ellip
diskorectangle, cut disk, and finally hard needle fluids. T
unit length is taken to be that of the underlying hard d
diameters ~for the hard needle case it is the needle leng!.
The various molecular parameters are the aspect ratiok, the
rectangle lengthL* 5L/s, and the cut disk thicknes
d* 5d/s. The reduced density is defined asr* 5rs2 and
the packing fraction ish5rS, whereS is the particle sur-
face.

One of the ingredients common to both the geometr
DCF and the integral equation methods is the Mayer fu
tion, whose projectionsf M

mn(r ) must be calculated numer
cally. For the molecular interaction symmetry consider
here, only even values ofm and n are retained@5#. Expan-
sion terms up ton,m,6 were retained, as in the previou
work @5#, where it was found that this choice was sufficie
to ensure that the numerical solutions of the integral equa
were not affected by the truncation of the rotational invari
expansion. The numerical calculation of thef M

mn(r ) has been
outlined in Refs.@5# and @16#.

NPT and NVT ensemble Monte Carlo simulations we
conducted for both the diskorectangle and cut disk flui
diskorectangles of rectangle lengthsL* 51, 2, and 5 and cu
disks of thicknesses ranging fromd* 50.1 to 0.5. The num-
ber N of molecules in the central box was around 200~the
exact number varies with the shapes and the aspect r
according to the maximum packing possibility!. In all cases,
equilibration runs were about 10 000–20 000 steps and
productions were run from 50 000–200 000 steps in so
cases. Long runs were needed, for example, in the cas
very elongated shapes, mainly to determine if the fluid w
nematically ordered. Indeed, in such cases, it was found
the nematic order of the fluid was lost very slowly in th
course of the runs. No detailed study of the size depende
on the order parameter was done here, however, nor wer
phase transitions located. The aim of the present work
only to provide the pressures and the pair correlations in
isotropic phase. In some cases, nematic phases were
plored and particularly the 2D analog of the cubic phase
the cut disks was also tracked to some extent, which is
cussed below.

Figure 1 shows a comparison between the dens
dependent coefficientsxa of the two approximations intro
duced in Sec. II for a fluid of ellipses of aspect ratiok54.
One can see that the surface term dominates totally the
~perimeter! and Mayer terms at high densities. Also, the s
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face termsxS from both approximations are closer to ea
other. The direct consequence is that the correspond
DCFs are quite similar in the high-density regime. On t
contrary, the two other termsxL andx0 tend to have diver-
gent behavior at high densities. In particular, the Mayer
efficient x0 for the second approximation becomes mu
larger in this regime. Consequently, from Eq.~28! one sees
that the second approximation will predict an orientation
instability at a density lower than that of the first approxim
tion. This last point is in disfavor of the second approxim
tion, as the first one already tends to predict orientatio
instability densities lower than those predicted by compu
simulations~see Fig. 5 and the discussion below!.

A. Pressure

The pressures for fluids of the ellipses of aspect ra
k52, 4, and 6 calculated from Eq.~24! are shown in Fig.
2~a!, together with the MC results of Cuesta and Frenkel@2#.
The hard disk results (k51) are also shown. The nemat
branches are shown as filled circles. One sees that the a
ment is quite good at small to medium densities for all elo
gation and deteriorates for high densities and large elon
tion. At high densities the theoretical pressures are alw
above that of the numerical ones. This feature must be lin
to the fact that the higher-order virial coefficients are sma
than those obtained from Eq.~26!. In particular, it was
shown that for large aspect ratios~the hard needle case, fo
example!, some of the higher-order virial coefficients cou
become negative@2#. This is in contrast to Eq.~26!, which
predicts strictly positive virial coefficients at all orders. Th
compressibility pressures from the PY and HNC integ
equations are also shown for the isotropic phase. The p
sures for diskorectangles are given in Fig. 2~b! and for cut
disks in Fig. 2~c!. Our Monte Carlo results for the pressur

FIG. 1. Density-dependent coefficients for the pair DCF, for t
two models discussed in the text, in the case of the hard ellipse
for the aspect ratiok54. The solid lines and the dotted line ar
respectively, for the first and second approximations. The let
help identify the coefficients corresponding to the surface (S), line
~or perimeter! (L), and the Mayer function (M ) terms.



shed
n

s
n

PRE 58 1939DIRECT CORRELATION FUNCTIONS IN TWO- . . .
FIG. 2. ~a! Equation of state (bP/r)k versus the densityrk for the hard ellipse fluid and for aspect ratiosk51, 2, 4, and 6. The solid
line is for the first approximation in the isotropic phase@Eq. ~20!# and the dotted line is for the corresponding nematic phase. The da
lines are compressibility route pressures from the PY~upper curve! and HNC~lower curve! approximations. The filled circles are simulatio
results from Ref.@2#. ~b! Equation of state for the hard diskorectangle fluid and for rectangle lengthL* 51, 3, and 5 (k5L* 11). The
symbols are the same as in~a!. ~c! Equation of state for the hard cut disk fluid and for thicknessesd* 50.5, 0.4, 0.2, and 0.1 (k51/d* ).
The symbols are the same as in~a!. ~d! Equation of state for the hard needle fluid. The symbols are the same as in~a!. The dots and square
are from Ref.@21# ~filled circles for the isotropic phase and open circles for the nematic phase!. The Onsager and KT transitions are show
by arrows.
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are given in Tables I and II. The general features are co
parable to those of Fig. 2~a!. It seems that the SPT geometr
cal results become worse as the aspect ratio increases
see that, on the contrary, the HNC compressibility res
become in closer agreement with the simulation resu
whereas the PY results are always too high. We note tha
both these theories, the density range for the isotropic ph
decreases strongly with the increase of the aspect ratio.

These two tendencies are more striking when examin
the hard needle case in Fig. 2~d!. In this case the SPT geo
metrical variables areS50 andl 52. The second virial co-
efficient is exact again (B251/2p), but all higher-order co-
efficients are zero. As a consequence, the geometrical m
is reduced exactly to the Onsager model, w
-

We
s
s,
or
se

g

el

c(1,2)5 f M(1,2). Hence the SPT EOS is lower that the M
results@21# at medium densities. In particular, we obser
that the isotropic-nematic transition predicted by our a
proach is identical to the Onsager prediction atr* 54.71. As
concerns the integral equations results, we see that the H
compressibility route gives nearly perfect results, wher
the PY theory gives pressures that are too high. One m
note also the very small density range over which the t
theories can be solved. This range is particularly small
the HNC theory~smaller than the Onsager transition de
sity!, whereas for the PY theory the density range extends
to values larger thanr* 510, which are larger than the
Kosterlitz-Thouless~KT! transition density. This behavio
has some similarities to the solution of the two integral eq
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1940 PRE 58ANTOINE CHAMOUX AND AURELIEN PERERA
tions for the 3D fluid of hard platelets@22#. We return to this
point in the discussion of the instability of the isotrop
phase.

The nematic branches for the hard ellipse fluid of asp
ratios 4 and 6 in Fig. 2~a! indicate clearly that the presen
theory predicts an isotropic-nematic phase transition at d
sities too low compared to simulation results. It is reasona
to think that the same trend is also true for the other con
bodies.

B. Structure

In this section we compare direct and pair correlat
functions obtained from the present theory and the two in
gral equations. In the case of the pair correlations, comp
sons with computer simulations are also shown.

Some expansion coefficientscmn(r ) of the DCFs for the
fluid of hard ellipses of aspect ratiok54 are shown in Fig.
3~a! for the densityr* 5rs250.15, wheres is the breadth
of the ellipse. The density is chosen to be close to the hig
density for which either of the integral equation could
solved. This convention is also adopted for other bodies. O
sees that for the isotropic componentc00(r ), the first geo-

TABLE I. Compressibility factor Z5bP/r versus density
r* 5rs2 for the diskorectangle fluids obtained by Monte Ca
simulations.

L* 51 L* 53 L* 55
Z r* Z r* Z r*

2.0 0.1569 2.0 0.0600 2.0 0.0331
3.0 0.2297 3.0 0.0927 3.0 0.0512
4.0 0.2636 4.0 0.1125 4.0 0.0663
5.0 0.2967 5.0 0.1306 5.0 0.0750
6.0 0.3227 6.0 0.1401 6.0 0.0829
7.0 0.3391 7.0 0.1456 7.0 0.0905
8.0 0.3486 8.0 0.1596 8.0 0.0968
9.0 0.3605 9.0 0.1971 9.0 0.1021

10.0 0.3655 10.0 0.2009 10.0 0.1075

TABLE II. Compressibility factor Z5bP/r versus density
r* 5rs2 for the cut disk fluids obtained by Monte Carlo simul
tions.

d* 50.1 d* 50.2 d* 50.4 d* 50.5
Z r* Z r* Z r* Z r*

1.5 0.8161 1.2 0.2773 2.0 0.6639 1.2 0.187
2.0 1.2948 1.5 0.5873 3.0 0.9493 1.5 0.371
3.0 2.3244 2.0 1.0145 4.0 1.1188 2.0 0.567
4.0 3.2565 3.0 1.5213 5.0 1.2599 3.0 0.803
5.0 4.0622 4.0 1.9627 6.0 1.3691 4.0 0.947
6.0 4.7286 5.0 2.2210 7.0 1.4658 5.0 1.069
7.0 5.2113 6.0 2.5547 8.0 1.5499 6.0 1.143
8.0 5.5415 7.0 2.7611 9.0 1.6069 7.0 1.233
9.0 6.1870 8.0 2.9655 10.0 1.6784 8.0 1.281

10.0 6.3837 9.0 3.0786 11.0 1.7533 9.0 1.323
11.0 6.7888 10.0 3.1989 12.0 1.8053 10.0 1.37
12.0 7.0356 12.0 3.5186 13.0 1.8439 11.0 1.41
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metrical approximation for the DCF interpolates quite nice
between the corresponding HNC and PY results. This beh
ior is no longer true for higher-order expansion coefficie
of the DCF, although the agreement between the three
ferent approaches is closer than that found for the isotro
component. Globally, from the inspection of the compone
displayed in Fig. 3~a!, one sees that the HNC DCF is th
most structured of all three, whereas the geometrical DC
the less structured one. One also sees the PY nature o
geometrical approximation in the relatively close rese
blance of features between these two DCFs. The agreem
between these two approximations become better at lo
densities. The same trends are observed for lower and hi
aspect ratios, although the difference between the geom
cal DCF and the two other approaches deteriorates with
creasing aspect ratios.

Figure 3~b! shows the DCF for the fluid of hard diskorec
angles of aspect ratiok54 (L* 53) at densityr* 50.12.
One sees that the major trends seen here are similar to t
observed for the hard ellipse DCF. One can note that
isotropic component of the geometrical DCF is now closer
that of the HNC theory. The density and aspect ratio dep
dences are quite similar to that of the ellipse fluid.

Figure 3~c! shows the three DCFs for the fluid of hard c
disks of aspect ratiok55 ~thicknessd* 50.2) at density
r* 51.5. Now the differences between the geometrical
proach and the two others are more marked. First the iso
pic component is no longer an interpolation between
HNC and PY results. Then thec02(r ) is not in such good
agreement with the others. We note that, similarly to the h
ellipse and diskorectangle fluid cases, the differences are
marked at lower densities. They also tend to disappea
smaller aspect ratios, albeit larger thickness, which ma
the shape closer to the hard disk. There are two reason
the differences seen in Fig. 3~c!. First, the cut disk shape is
two-dimensional oblate shape~the particle axis is perpen
dicular to the longer symmetry axis! and our investigation of
oblate shapes in three dimensions@13# has shown that the
geometrical approach was not very good in this case. In f
there are some resemblances between the behavior o
DCF componentsc00 and c02 in two dimensions and the
corresponding ones inc000 andc202 in three dimensions. The
second point concerns the fact that cut disks of thickn
d* 50.2 have a tendency to exhibit a two-dimensional c
batic phase as will be shown subsequently, whereas the
metrical approach predicts an instability towards a nem
phase. This reflects the density couplings that builds up
the PY and mainly the HNC DCFs and cannot be represen
simply as a linear function of the Mayer function as in E
~14!. We return to this point in the discussion of the orie
tational instability of the isotropic phase. A similar concl
sion was also reached in Ref.@18# in the study of the cut
sphere fluids.

The pair correlations for the three types of fluids encou
tered above are displayed in Figs. 4~a!–4~c! together with
computer simulations results. For the hard ellipse fluid o
the componentsgm2m(r ) for m50, 2, and 4 are available
from computer simulations@2,5#. These projections are com
pared with the three theoretical results for the fluid of ha
ellipse of k54 at densityr* 50.152 in Fig. 4~a!. As men-
tioned at the end of Sec. II B, the pair correlation functi
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FIG. 3. ~a! Expansion coefficientscmn(r ) of the pair DFC for the hard ellipse fluid of aspect ratiok54 at the densityr* 50.15. The solid
line is for the first approximation, the dotted line for the HNC theory, and the dashed line for the PY theory. The projection indicesm,n)
are indicated on the corresponding panels. The vertical labeling for the projections (0,2) and (2,22) is the same, and similarly fo
projections (0,4), (4,24), and (6,26). ~b! Expansion coefficientscmn(r ) of the pair DFC for the hard diskorectangle fluid forL* 53 at the
densityr* 50.12. The lines and labeling conventions are the same as in~a!. ~c! Expansion coefficientscmn(r ) of the pair DFC for the hard
cut disk fluid ford* 50.2 at the densityr* 51.5. The lines and labeling conventions are the same as in~a!.
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g(1,2) corresponding to the geometrical DCF will not
zero for overlapping configurations of particles 1 and 2. T
flaw of the geometrical model was also mentioned in the
case@13#. This feature of the pair correlation function can
clearly seen in Figs. 4~a!–4~c!, at least in ther /s<1 region.
However, it is surprisingly PY-like in other regions, main
for the isotropic componentg00(r ). The fact that this theory
is able to reproduce the isotropic nematic instability can
seen in the long-range correlations growth of theg222(r )
component, in accord with the computer simulation a
HNC results, but at variance with the PY results. In additio
one notes the oversized first peak, very much HNC-li
which again experiences the strong short-range alignme

Figure 4~b! shows more components of the pair corre
tion for the fluid of hard diskorectangles fork56 and at
s

e

d
,
,
.
-

density r* 50.078. Globally, features similar to that ob
served above for the hard ellipse case. We note that the H
results tend to exaggerate the first peak, which shows
nearest-neighbors alignment tendency, whereas the PY
sults totally miss this feature. The PY theory is in bet
agreement in the range where particles have a loose per
dicular alignment, as seen ing424 aroundr * 53. It seems
that the HNC theory overemphasizes the ordering tend
cies, whereas the PY theory misses the same tendencies
geometrical approach indicates a global ordering from
g222 component. These results are corroborated by the
entational instability analysis.

The case of the hard cut disk fluid is displayed in Fig. 4~c!
for the thicknessd* 50.2 and densityr* 51.5, which is not
really a high density. This choice was dictated by the f
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FIG. 4. ~a! Pair correlation expansion coefficientsgmn(r ) of the pair correlation function for the hard ellipse fluid of aspect ra
k54 at the densityr* 50.152. The solid line is for the first approximation, the dotted line for the HNC theory, and the dashed line
PY theory. The dots are simulation results from Ref.@5#. The projection indices (m,n) are indicated on the corresponding panels. T
vertical labeling is the same for projectionsg222, g424, andg626. ~b! Expansion coefficientsgmn(r ) of the pair correlation function for the
hard diskorectangle fluid forL* 55 at the densityr* 50.078. The lines are the same as in~a!. ~c! Expansion coefficientsgmn(r ) of the pair
correlation function for the hard cut disk fluid ford* 50.2 at the densityr* 51.5. The lines are the same as in~a!. ~d! Expansion coefficients
gmn(r ) of the pair correlation function for the hard needle fluid at the densityr* 52.5. The lines are the same as in~a! and the filled circles
are our computer simulation results.
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that the PY theory had no solutions for densities abo
r* 51.59. This is sufficient, however, to point out the pa
ticularities of this fluid. First, we observe the same featu
of the geometrical approach as observed in Figs. 4~a! and
4~b!. The PY results are in better agreement with the sim
lations than any of the two other results, except forg00 near
r * 50.35. One sees also that none of the angular compon
develop long-range correlations at this density. The sh
range cubic-type ordering that is particular to the thickn
d* 50.2 is already visible at this density, particularly in th
g222(r ) component, which shows a first broad peak indic
ing a piling of two cut disks. Then one observes a lar
negative small peak, indicating a perpendicular ordering
another short stack pile of two cut disks. This is corrobora
by the g424(r ) component, which has a positive seco
peak. These tendencies develop strongly at higher dens
e

s

-

nts
t-
s

-
e
f
d

es,

indicating clearly that there is a cubatic-type ordering at le
in the short-range region. This picture is also supported
the snapshots that show a typical ‘‘broken book pile’’ pictu
with the short stack piles being locally perpendicular to ea
other. This picture is not seen at larger (d* 50.5) or lower
(d* 50.1) thicknesses. The question whether or not this t
of order is long ranged is difficult to answer mainly in th
two-dimensional systems where any long-range order
plagued by defect formations and bindings. We leave t
question open until further dedicated studies.

Finally, the hard needle case is shown in Fig. 4~d!. We
recall that here the geometrical approach predicts that
DCF is equal to the Mayer function and thus is independ
of the density. The only density dependence of the co
sponding pair correlation comes through the OZ equati
thus explaining the very weak density dependence obse
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FIG. 5. ~a! Orientational instability factorsDm(m52, 4, and 6! versus the packing fractionh5rS for the hard ellipse fluids of aspec
ratios k52, 4,and 6. The solid lines are for the first approximation of the DCF and the dotted lines and dashed lines corr
respectively, to the HNC and PY theory results. For each of the theories, the topmost curve is form56 and the lowermost form52. The
arrows indicate the isotropic-nematic transition densities as found by the computer simulations~Ref. @2#!. ~b! Orientational instability factors
Dm for the hard diskorectangle fluids forL* 51, 3, and 5. The lines are the same as in~a!. ~c! Orientational instability factorsDm for the
hard cut disk fluids ford* 50.5, 0.2, and 0.1. The lines are the same as in~a!. ~d! Orientational instability factorsDm for the hard needle
fluid. The lines are the same as in~a!.
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in Fig. 4~d!. The HNC result are surprisingly accurate, whi
is true for all densities for which this theory could be solve
This finding is in agreement with the good results obtain
for the pressure.

C. Orientational instability of the isotropic phase

The Dm for all three type of fluids are displayed in Fig
5~a!–5~c!. Only the first approximation for the DCF was re
tained here, as the second one predicts instabilities at de
ties far too low, due to the fact that thex0 coefficient in Eq.
.
d

si-

~28! for the second approximation is too large~see Fig. 1!
compared to that of the first approximation. The isotrop
nematic instability functionsDm for the hard ellipse fluids
are plotted in Fig. 5~a! versus the packing fractionh5rS (S
is the surface of the ellipse! for the three aspect ratio
k52, 4, and 6. The HNC and PY results are also show
respectively, as dotted and dashed lines. The instability d
sity is the solution ofDm50. Usually, form52 such a so-
lution indicates an orientational instability towards the ne
atic order. For higherm values more complex orderin
tendencies could be destabilizing the isotropic phase.
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case of the integral equation is more complex. TheDm from
the solution of these equations stops before the zero valu
attained because no numerical solution is found beyon
certain value of the density. The reason why the solution
lost is not clearly known. Such behavior is also met in oth
cases such as liquid-gas coexistence@23# or Coulombic flu-
ids @24#. It is important to note that the loss of the numeric
solutions is totally independent of the accuracy of the al
rithm used in each case and is believed to stem from
mathematical nature of the PY and HNC closures@23#. It is
customary to consider that the extrapolation ofD2 to zero
gives the density at the limit of stability of the isotrop
phase.

We recall that computer simulations of Cuesta and Fr
kel @2# for the same fluids have shown the existence of
isotropic-nematic transition only for ellipses of aspect rat
4 and 6. It is obvious from Fig. 5~a! that the fluid of ellipse
for k52 has no orientational instabilities~the D2 curves
extrapolate to zero beyondh51). For thek54 andk56
cases we note that both HNC and the geometrical appro
indicate an orientational instability towards the nema
phase and at densities quite close to each other. These v
are much smaller than those predicted by computer sim
tions. We find here that in the case ofk54, h ins50.567 for
the geometrical approach, while the computer simulat
predict h IN'0.74. Similarly, for k56 we find
h ins50.424, while the simulations predicth IN'0.59. We
note, however, that the analysis of the computer simulati
is based on the apparition of defects binding phenome
which are not accounted for in the theories discussed h
The comparison with other approaches such as density f
tional theories@25# shows that the instability densities pr
dicted here are larger than those found in such approac
which makes the present approach even more appealin
particular, such approaches generally predict transitions
all aspect ratios, a feature that is unrealistic. As noted in R
@5#, the PY theory predicts no orientational instabilities~or at
unreasonably high-density values!, a feature already ob
served in three dimensions@26#. We note another feature tha
was also observed in previous studies: The HNC theory
dicts orientational instability from allDm54 at the same
density. This feature is almost a signature of the HNC
havior for anisotropic fluids.

We turn now to the fluids of diskorectangles. Figure 5~b!
shows features similar to those of Fig. 5~a!. We note that for
diskorectangles of aspect ratiok54 the geometrical theory
predicts an instability ath ins50.663. However, in this case
the curvature of theD2 function from the HNC theory doe
not allow an unambiguous extrapolation to zero. In fact,
analysis of the long-distance behavior ofh222(r ), which is
responsible for the orientational destabilization of the isot
pic phase, shows that in this case the function has no lo
range tail. Thus the HNC theory does not predict an orien
tional instability. This seems to be in accord with o
computer simulations, where we could not stabilize a ne
atic phase at high densities. For the casek56 the geometri-
cal approach predictsh ins50.521. Similarly to the previous
case, the extrapolation to zero of theD2 curve from the HNC
theory cannot be obtained accurately. In accord with t
latter finding, our computer simulation could not find a sta
nematic phase. The nematic phase seems to appear for a
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ratios larger thank57. We could observe unambiguous
such a phase fork58. This particular fluid certainly de-
serves a more thorough study in the future. Indeed, our fi
ing supports the idea that fluids of hard diskorectangles h
a stable nematic phase for particle aspect ratio larger t
that needed for the case of fluids of a hard ellipse. This off
some similarities to the three-dimensional case, where
nematic phase for spherocylinders was observed for as
ratios larger than those for ellipsoids@27#.

The fluid of hard cut disks also has interesting featur
Figure 5~c! shows again that the geometrical approach p
dicts nematic-type orientational instabilities for thickness
d* 50.2 and d* 50.1 ~aspect ratios of 5 and 10, respe
tively!. However, the HNC integral equation shows a curio
crossover ofD2 and D4 at thicknessesd* 50,2, which is
very much reminiscent of that observed for the cubatic
dering in three dimensions@18#. The confirmation by com-
puter simulation of the existence of such an order in
two-dimensional case is beyond the scope of this wo
mainly because the phase transitions in two dimensions
plagued by the defect binding phenomena, which make
small-scale studies very cumbersome. However, snaps
from our computer simulation studies@28# reveal that a
cubatic-type order exists, at least locally, as one observ
broken book pile type of picture, with short piles being l
cally perpendicular to each other. This type of order is n
visible for larger (d* 50.5) or smaller (d* 50.1) thick-
nesses. Ford* 50.2, the analysis of the long-range part
h424(r ) shows that this function has a long-range part gro
ing faster thanh222(r ). As our simulations are performe
for at most 200 particles, it is difficult to speak of long-ran
behavior. However, this analysis support the short-
medium-range picture observed in the snapshots.

It is interesting to ask whether the geometrical theory c
predict such an instability. In view of Eq.~28!, a simple
investigation of the Mayer function expansion coefficien
f̃ M

m2m(k50) is sufficient. In Fig. 6 we have plotted suc
values form50, 2, 4, and 6 versus the thicknessd* . One
sees that ford* >0.44 the geometrical approach will predi
the cubatic ordering. Ford* >0.61 one will eventually ob-
serveD650 before the other two modes. A similar featu
was also observed for cut spheres@18# where the geometrica
approach also predicted cubatic ordering for unrealistic la
thicknesses. We find finally that the PY theory predicts ag
no orientational instabilities.

We now examine briefly the case of the hard needle fl
in Fig. 5~d!. Clearly the HNC theory predicts a nematic in
stability at the densityr/L'3, whereas the geometrica
theory predicts the same type of instability at exactly t
Onsager densityr/L54.71. This last point is no surpris
since the geometrical DFC is reduced to the Mayer funct
in this limit. The linearity of all the modesDm with respect
to the density is also a direct consequence of this feature@see
Eq. ~28!#. We note that, in the case of the HNC theoryall the
modes seem to point to the same instability density. This
typical feature of the HNC theory. The PY theory, howev
shows a very different concavity for all the modesDm , and
even if very small values of the modeD2 can be achieved, it
is not possible to conclude any solution for the orientatio
instability D250. Similarly to the case of the hard platel
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fluid in three dimensions, this extreme example of a tw
dimensional fluid can serve as a test of the theories@22#. In
the present case, one sees that the HNC and PY theories
a similar low-density behavior, which is very different fo
the geometrical DCF results. One is then tempted to say f
Eq. ~28! that the density-dependent factorx0 is not correctly
accounted for by the approximations described here. T
remark opens a route for systematic corrections of the g
metrical approach@22#.

IV. DISCUSSION AND CONCLUSION

From Sec. III it seems quite clear that the geometri
approach to the DCF and the thermodynamic properties
two-dimensional fluids of hard bodies can be successf
applied for moderate aspect ratios and densities and
lesser extent for larger densities and aspect ratios as we
is important to note that the pair DCF is not entirely writt
as a sum of convolution of weight functions, due to the f
that it contains the true Mayer function. The latter cannot
written as a convolution of weight functions, except for fe
very special cases, such as hard disks or rigidly parallel
ticles @16#. Although being PY-like by construction, the ge
metrical DCF also has some desirable features from the H
theory, such as the prediction of the orientational instabil
a feature totally absent from the PY theory. Moreover, t
approach is numerically simpler than the integral a
proaches, an additional attractive feature to bear in mind
the case of application to more complex systems, such
mixtures and solid-liquid interfaces for example. Indeed,
present approach allows the calculation of a particular exp
sion coefficientcmn(r ) without having to compute the ful
DCF or the pair correlation function. In this way, one cou
simply extract the desired orientational properties, such

FIG. 6. k50 values of the Fourier-Bessel transforms of t

Mayer function expansion coefficientsf̃ M
m2m for the hard cut disk

fluid, versus the cut disk thicknessd* . The differentm values are
indicated next to the corresponding curves. Note that themÞ0
values are multiplied by 10.
-

ave
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c222(r ), the component of the DCF responsible for the o
entational instability.

However, the geometrical theory fails to account for t
ordering features in the sense that it always predict an or
tational instability of the isotropic phase at a density t
small. This feature, which was already true in the thre
dimensional case, seems worse in two dimensions. It co
be explained by the fact that the ordering in two dimensio
is strongly influenced by defects, a feature that is not
counted for in the theory developed herein.

The present work raises some questions about the
grammatic nature of the three theories compared herein.
DCF as expressed by Eq.~6! contains only pair terms. All
the higher-order density correlations are contained in thexa
coefficients. In view of the poor agreement observed for v
anisotropic particles or oblate shapes, one is led to think
more than pair correlations must be incorporated in
spatial-variable-dependent factors. This is particularly t
when examining the case of hard cut disk fluids as well
the three-dimensional case of cut spheres@18#. In order to
describe the short-range cubatic-type piling effect one m
account for more than three particle correlations. Clearly,
HNC theory does so~also true in three dimensions@18#!. The
case of the PY theory is more complex. Indeed, the PY D
contains the Mayer function in the low-density limit expa
sion, as it gives the correct second and third virial coe
cients. One would then expect this theory to predict the
batic ordering, at least for large thicknesses. This, howe
is not the case~not even in three dimensions@18#!. So the
higher-order density expansion terms of the PY DCF m
somehow destroy the effect of the Mayer function. This
gument is even more true when examining the simpler c
of the nematic instability, which is also contained in th
Mayer function ~at an Onsager level of approximation fo
example! and consequently in the geometrical DCF, but n
in the PY DCF. It would be of fundamental interest to fin
at a diagrammatic level, why the geometrical approach,
though simpler than the PY approximation, provides a be
description of anisotropic fluids, in closer agreement with
HNC theory. In particular, it is interesting to know wheth
correcting the geometrical DCF in order to account for a z
pair correlation inside the hard core might increase or
crease the accuracy of this method. The systematic stud
extreme models such as the hard needles or the hard pla
by these theories also helps answer some of the unansw
questions. These answers in turn might help shed some
on the criticality of the two integral equation theories, a su
ject that has recently gained renewed interest.

APPENDIX A: WEIGHT FUNCTIONS

In what follows we give the formal expression for th
expansion coefficients of the surface weightw(s)(1) and the
line weightw( l )(1), which are essential for the developme
of our theory. The expressions are restricted to particles h
ing a uniaxial symmetry because all the convex objects s
ied here have the same symmetry. We recall t
w(a)(1)5w(a)(r,u), whereu is the orientation of the mol-
ecule andr is the radial vector to the surface of the partic
First we develop the weights in the general basis set of r
tional invariants Eq.~15!. One has, using the simplified no
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tation wm
(a)[wm0

(a) , an expansion identical to that of Eq.~9!,

w~a!~1!5w~a!~r,u !5(
m

wm
~a!~r !Cm0~u r ,u1!, ~A1!

whereCm0(u r ,u1)5exp(imu) andu5u12u r . We see that
the weight functions depend only on the relative angle
tweenr andu. Using the orthogonality of the invariants on
can invert this relation to get thewm

(a)(r ),

wm
~a!~r !5

1

2pE du w~a!~r ,u!Cm0~u!. ~A2!

When the definitions of Eq.~13! are introduced in Eq.~A2!
one gets the desired expansion coefficients. Because
weight functions are distributions, some care should be ta
before performing the angular integration. In all the resu
below R(u) represents the distance from the center of
particle to its surface andu is the angle between the symm
try axis of the particle andR. For all the convex objects
studied in the present workR(u) is a simple analytical func-
tion of the angleu and the reciprocal functionu(R) is easily
obtained~see Appendix B!.

For the surface weight,w(S)(r ,u)5H(r ,u)[H„R(u)
2r …, whereH(x) is the Heaviside step function, which
unity only for x>0. Using the symmetry properties of th
particle, the integral in Eq.~A2! can be performed to give

wm
~S!~r !5

2

p
u~R! j 0„mu~R!…, ~A3!

where j 0(x) is the zeroth-order spherical Bessel function.
The line weight is more delicate as it involves ad func-

tion. In this case,w(L)(r ,u)5t(r ,u)d„R(u)2r …, whered(x)
is the Dirac distribution and the functio
t(r ,u)5A11 (1/r 2) (dr/du)2. The integral in Eq.~A2! can
be evaluated by making the formal variable chan
r→u(r ). After some algebra one finds

wm
~L !~r !5

2

p

t„r ,u~R!…cos@mu~R!#

dR/du
, ~A4!

where it is understood that the substitutionr 5R must be
done after the calculations involvingR(u) are done.

Appendix B gives explicit expressions for the weights f
the particles studied in this work. The convolution produ
in Eq. ~18! are evaluated through the numerical Fouri
Bessel transforms of the weights as evaluated above. In
case of the line weight, integrable divergence may appea
the R values corresponding to the angleu50 and/or
u5p/2. They simply correspond to the properties of t
slopedR/du at these points and are found for particles su
as the hard ellipse or the diskorectangle. These diverge
are handled exactly by considering the Fourier-Bessel tra
forms of the integral of the line weights, which are we
defined functions@16#. The explicit relation linking the
Fourier-Bessel transform of the line weightwm

(L)(r ) and its
integralWm

(L)(r ) is
-

the
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e

s
-
he
at

h
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s-

w̃m
~L !~k!52 ikTm11@Wm

~L !#2~m11!TmFWm
~L !

r
G , ~A5!

whereTm(F) is the Fourier-Bessel transform of orderm of
the functionF(r ) @5,29#.

APPENDIX B: WEIGHT FUNCTIONS FOR FEW 2D
CONVEX BODIES

The surface and line weights, together with the SPT g
metrical parameters~surfaceS and perimeterl ), are given
herein. Both weight functions can be expressed as

wm
~S!~r !5

2

p
u~r ! j̇ 0„mu~r !…, ~B1!

wm
~L !~r !5n~r !cos@mu~r !#, ~B2!

where j̇ 0 is the zeroth-order spherical Bessel function. T
functionsu(r ) and l (r ) are specific to each convex bodie
All the distance units are reduced with respect to the dia
eters of the disk to which each of the convex bodies goes
the spherical limit.

1. The hard ellipse

For the aspect ratio k one has S5p/4k and
l 52k*0

p/2dgAcos2(g)2sin2(g)/k2,

u~r !5arccosF k

Ak221
A12

1

4r 2G , ~B3!

n~r !5
4

p
A 11k224r 2

~4r 221!~k224r 2!
. ~B4!

2. The hard diskorectangle

For the rectangle lengthL ~aspect ratiok5L11), one
has S5p/41L and l 5p12L. The expressions for the
weights depend on the disk or rectangle parts. F
1<r<AL211/2 one has

u~r !5arccosA12
1

4r 2
, ~B5!

n~r !5
2

r
A5r 221

4r 221
, ~B6!

and forAL211/2<r<(L11)/2 one has

u~r !5arccosS 4r 21L221

4rL
D , ~B7!

n~r !5
8

p

1

A@4r 22~L11!2#@~L21!224r 2#
. ~B8!
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3. The hard cut disk

For the cut disk thicknessd ~aspect ratiok51/d) one has
S5p/42(1/2)arctan(A1/d221)1(d/2)A12d2, l 5p
22arctan(A1/d221)12A12d2,
da
u~r !5
p

2
2arccosS d

2r D , ~B9!

n~r !5
4

pA4r 22d2
. ~B10!
ys.
,
n-
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